

Canonical partition functions in lattice QCD at high temperature

V. Bornyakov, D. Boyda, V. Goy, A. Molochkov, and A. Nakamura

> Far Eastern Federal University Vladivostok, Russia

> > Lattice 2019, Wuhan, 19 Jun 2019

Plan of the Talk

1.Introduction

How/What shall Lattice QCD contribute to Experiments at finite baryon density ?

- 2. Brief Summary of Canonical Approach
- 3. Analyses of Experimental data with Lattice QCD
- 4. Summary

1. Introduction

Now we can handle finite density QCD using the Canonical approach.

Question:

How we can contribute Experiments ?

Our Answer:

Estimate Chemical Potential,Volume and Temperature by combining Lattice + Experimental data.

2. Brief Summary of Canonical Approach

 $\operatorname{Tr} e^{-(\hat{H}-\mu\hat{N})/T}$

Grand Canonical Partition Function $\sum_{n} \frac{z_n(T)}{\xi^{\gamma}}$

Partition Function

// : Chemical
 Potential
//
T : Temperature

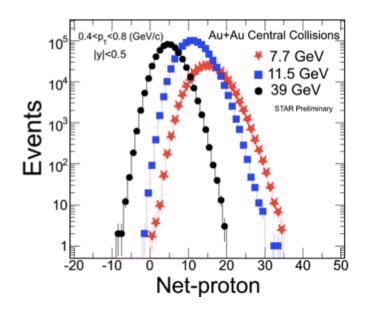
 $\xi \equiv e^{\mu/T}$ Fugacity

$$Z(\mu, T) = \sum_{n} z_{n}(T)\xi^{n}$$
$$\xi \equiv e^{\mu/T}$$

This is very useful relation because we can calculate $z_n(T)$ at imaginary μ where no sign problem, then we know $Z(\mu, T)$ at any μ .

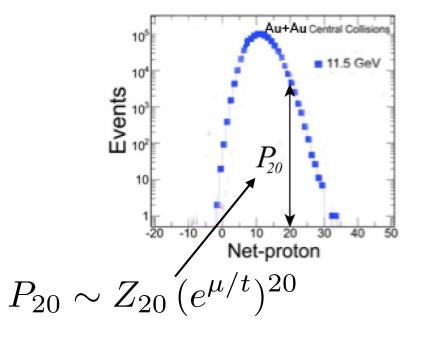
real, imaginary or even complex

Z_N are related with experimental data



STAR@RHIC

$$Z(\mu, T) = \sum_{n} Z_n (e^{\mu/T})^n$$



 $[\det D(\mu)]^* = \det D(-\mu^*)$ For Pure Imaginary $\mu \quad real$

A.Hasenfratz and Toussant, 1992

$$Z_n = \int \frac{d\theta}{2\pi} e^{i\theta n} Z_{GC}(\theta \equiv \frac{\mathrm{Im}\mu}{T}, T)$$

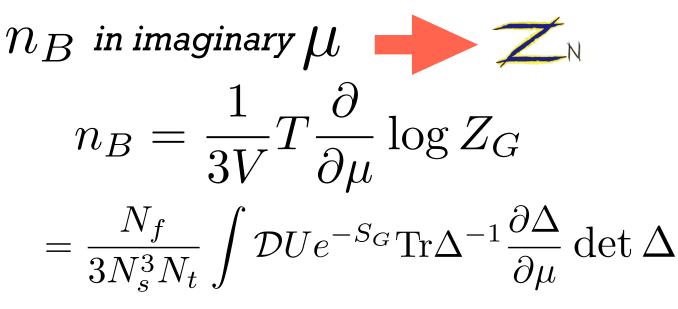
All information is in Imaginary Chemical Potential regions!

Great Idea ! But practically it did not work.

For making the method workable, we need the two additional ingredients.

Multi-Precision Calculations
 Integration method

Integration Method



(For pure imaginary μ , n_B is also imaginary)

Then, for fixed T

$$Z(\theta \equiv \frac{\mu}{T}) = \exp(V \int_0^\theta n_B d\theta')$$

$$Z_k = \frac{3}{2\pi} \int_{-\pi/3}^{+\pi/3} d\theta \exp\left(i\,k\theta + \int_0^\theta n_B d\theta'\right)$$

We map Information in Pure Imaginary Chemical Potential to Real ones.

We measure the number density at many pure imaginary chemical potential $n_B(\mu_I)$.

We construct Grand Partition Function Z_G , by integrating $n_B(\mu_I)$

 ${igsiresize}$ By Fourier transformation, we get z_n

 ${\mathbb F}$ Then we can calculate Real μ regions by

$$Z(\xi,T) = \sum z_n(T)\xi^n$$

n

 $\mu_{\rm I}/T = \pi/3$ Periodic
with $2\pi/3$ -period
nuclei, neutronstar
(hadron in finite mu)

 T_E

tricritical point

 $\xi \equiv e^{\mu/2}$

Roberge-Weiss

phase transitio

Plan of the Talk

1.Introduction

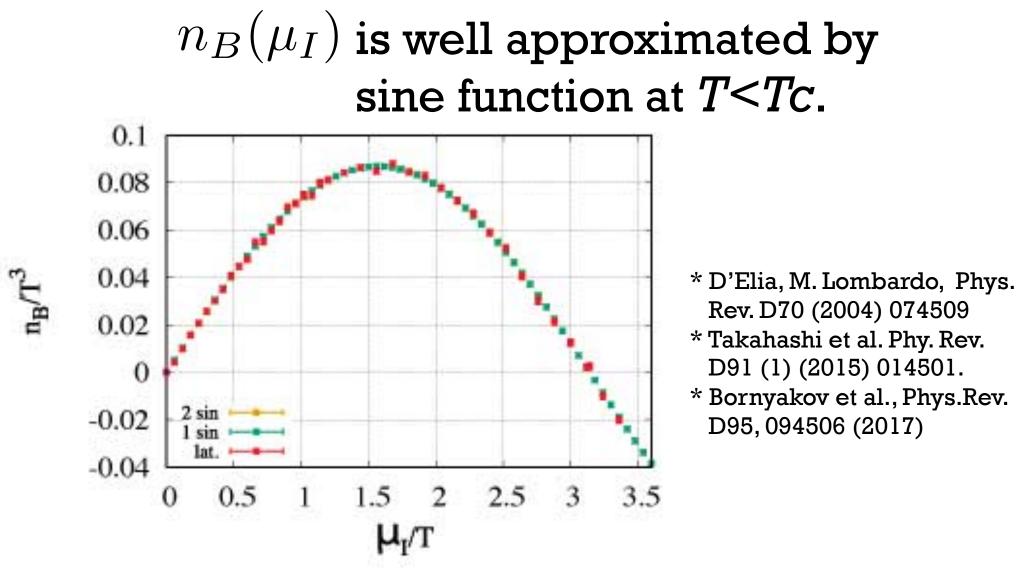
How/What shall Lattice contribute Experimenta at Finite density QCD

2. Brief Summary of Canonical Approach

3. Analyses of Experimental data with Lattice QCD

4. Summary

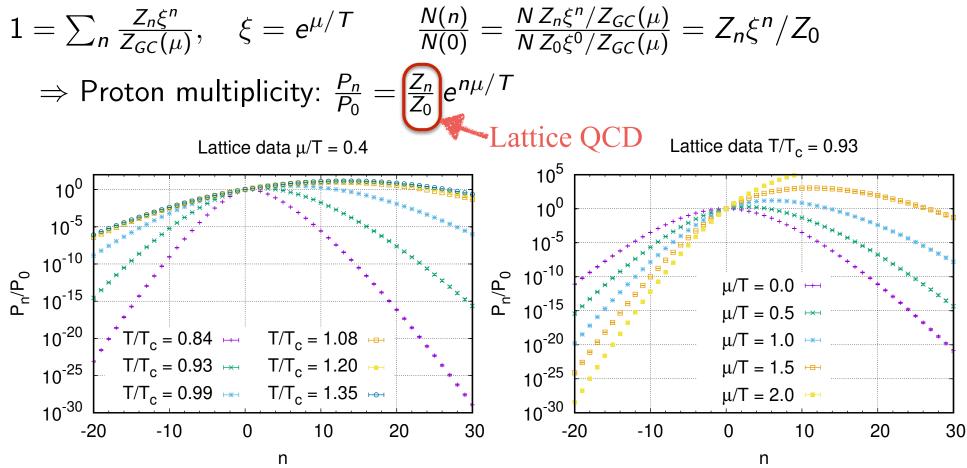
3. Analyses of Experimental data with Lattice QCD



D.Boyda, Talk at Osaka

Proton multiplicity: Lattice data

Probability interpretation:



$$\frac{P_n}{P_0} = \frac{Z_n}{Z_0} e^{n\mu/T} = \frac{\int d\theta e^{in\theta} e^{-V \int_0^\theta n_B(T,\tilde{\theta}) d\tilde{\theta}}}{\int d\theta e^{i\theta} e^{-V \int_0^\theta n_B(T,\tilde{\theta}) d\tilde{\theta}}} \times e^{n\mu/T}$$
Experiment
Lattice with μ, T and V
as parameters

$$n_B = \frac{T}{V} \frac{\partial}{\partial \mu} \log Z_{GC}$$

k

 $=\sum f_k(T)\cos 3k\left(\frac{\mu}{T}\right)$

RHIC Energy Scan Data

Fitting RHIC multiplicity data using nB of 1) Boyda et al. 2) Vovchenko et al. with paramters, μ, T and V

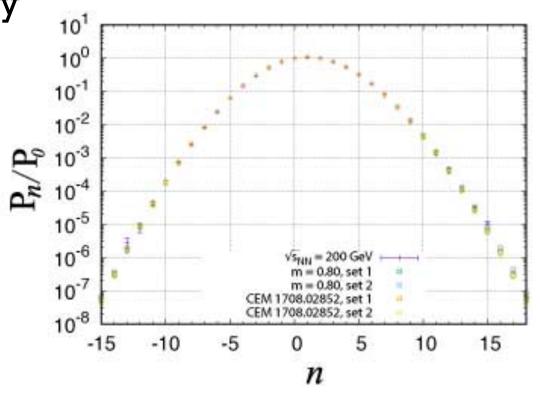
1)
$$\mu = 0.15, T/T_c = 0.95, V^{1/3} = 3.0$$

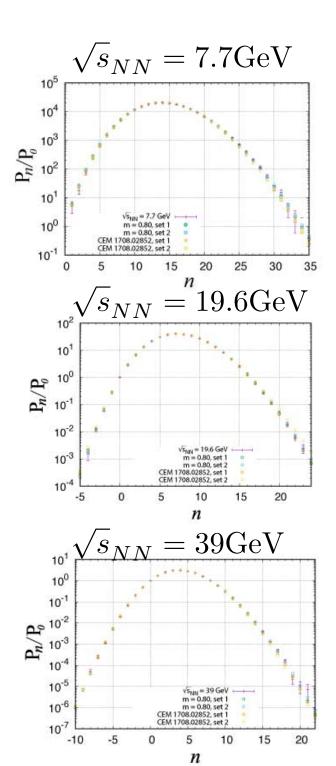
or
 $\mu = 0.15, T/T_c = 0.94, V^{1/3} = 6.5$

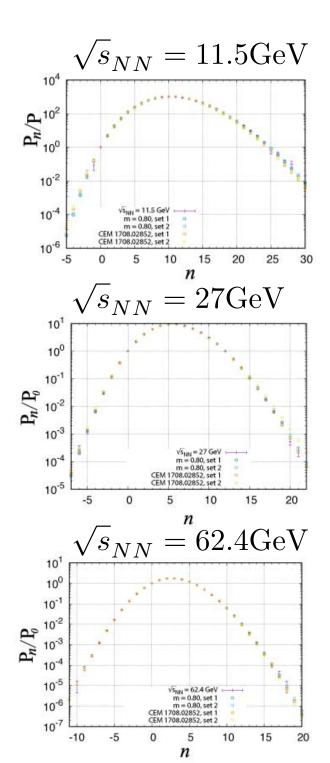
2)
$$\mu = 0.15, T/T_c = 0.95, V^{1/3} = 5.2$$

or
 $\mu = 0.15, T/T_c = 0.90, V^{1/3} = 3.0$

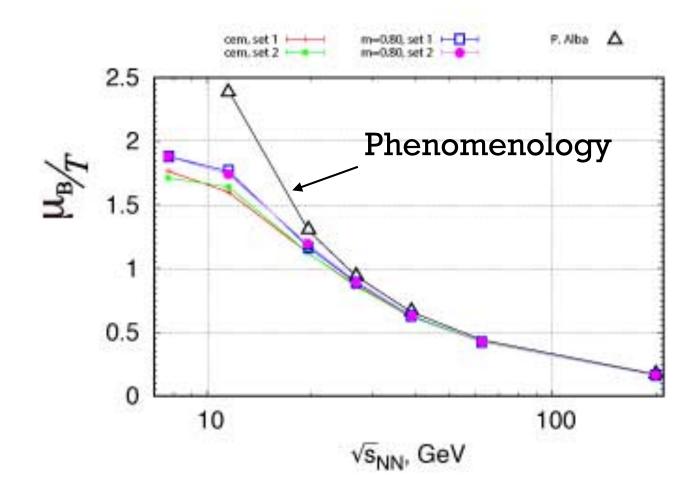
 $\sqrt{s}_{NN} = 200 {
m GeV}$



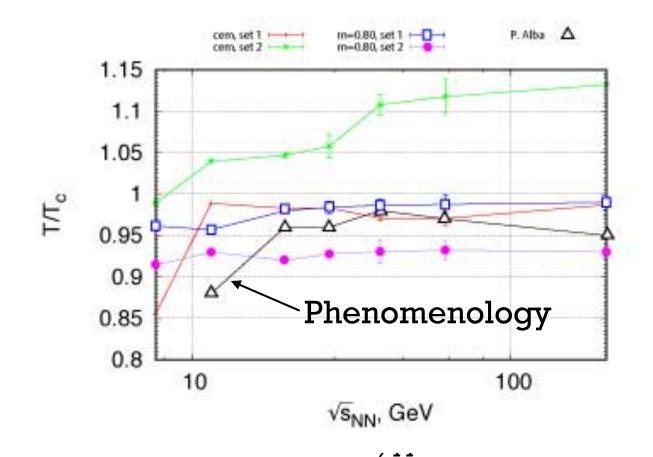




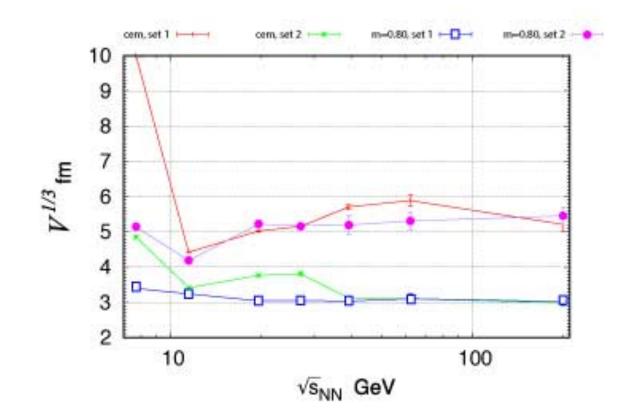
Obtained fitting Parameters i) Chemical Potential



Obtained fitting Parameters ii)Temperature



Obtained fitting Parameters iii)Volume



Summary

- Canonical approach can study finite density QCD at T>0 especially RHIC energy scan regions.
 - This lattice study results + RHIC multiplicity data

We can estimate μ , T and V of the created fire ball

- Results are very reasonable.
- But still large ambiguity. This may be improved by using not only the multiplicity, P_n/P_0 but also higher moment