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OverviewOverviewOverviewOverviewOverview

Motivation:
��1 Anisotropic lattices: necessary to study thermodynamics

in strong coupling regime (β fixed)

��2 Anisotropy has been studied in a dual formulation in the strong coupling limit,
both for zero and non-zero quark mass

��3 We extend these results to finite β (here: chiral limit)

Content:
��1 Lattice QCD in the Dual Representation, Role of Anisotropy

��2 Results on Anisotropy and Continuous Time Limit

��3 Some results on the phase diagram
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Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?Goal: What does the Phase Diagram including β look like?

Phase Diagram in the Strong Coupling Regime:

obtained via reweigthing
[Langelage, de Forcrand, Philipsen & U., PRL 113 (2014)]

important question: what happens to the
chiral (tri)-critical point?

One of several possible scenarios for the extension
to the continuum:

back plane: strong coupling phase diagram
(β = 0, a large), Nf = 1 (doublers decouple)
front plane: continuum phase diagram
(β =∞, a = 0), Nf = 4 (no rooting)
number of Goldstone bosons matter, between
1 at strong coupling and 15 in continuum.
anisotropy γ 6= 1 crucial
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Why Lattice QCD in a Dual Formulation?Why Lattice QCD in a Dual Formulation?Why Lattice QCD in a Dual Formulation?Why Lattice QCD in a Dual Formulation?Why Lattice QCD in a Dual Formulation?

��1 Dual representation: color singlets (integers) as dual variables
all gauge fields Uµ(x) are integrated out
at strong coupling: link states are mesons and baryons
[Kawamoto & Smit ’81], [Rossi & Wolff’ 84], [Karsch & Mütter ’89]
at β > 0: color singlets, triplets, . . . which can include gluon contributions

��2 “Solution” to a sign problem:
Z =

∑
{C}

w(C) has negative/complex weights w(C),

sampling with “wrong” weight exponentially hard
〈

eiφ
〉
||

= e−
V
T ∆f

find a new representation {C ′} such hat w̃(C ′) ≥ 0
(or a representation {C ′} where ∆f small enough for practical purposes)

��3 Sign problem in strong coupling regime β = 6
g2 . 1 mild enough

to study full phase diagram:
baryons are heavy: ∆f ' 10−5 → reweighting of the sign feasible
resummations of world-lines possible to reduce the sign problem further
color singlets (hadrons) closer to physical states than colored gauge links

Note: Dual/worldline formulations also useful in many other lattice field theories,
see also talks by [Christopf Gattringer],[Maria Anosova], [Daniel Göschl], [Oliver Orasch]
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Chiral Transition and Nuclear TransitionChiral Transition and Nuclear TransitionChiral Transition and Nuclear TransitionChiral Transition and Nuclear TransitionChiral Transition and Nuclear Transition

Chiral symmetry in SC-LQCD with staggered fermions for Nf = 1:

U(1)V × U(1)55 : χ(x) 7→ e iε(x)θA+iθV χ(x), ε(x) = (−1)x1+x2+x3+x4

U(1)V baryon number conserved
U(1)55 chiral symmetry spontaneously
broken at low temperatures/densities
expected to be O(2) 2nd order (µ = 0)
note: no chiral anomaly at β = 0

Nuclear Transition (T=0):
baryon crystal forms (Pauli saturation)
chiral symmetry restored
expected to be 1st order

Existence of a Tricritical Point:
chiral TCP and nuclear CEP coincide

Strong coupling phase diagram via
mean field: [Nishida, PRD 69 (2004)]
For gauge corrections in MF see also
[Nakano, Miura, Ohnishi, PRD 83 (2010)]
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Dual Formulation: monomers+dimers+worldlines+worldsheetsDual Formulation: monomers+dimers+worldlines+worldsheetsDual Formulation: monomers+dimers+worldlines+worldsheetsDual Formulation: monomers+dimers+worldlines+worldsheetsDual Formulation: monomers+dimers+worldlines+worldsheets

Z(mq, µ) =
∑

{k,n,`,np}

∏
b=(x,µ)

(Nc − kb)!
Nc!(kb − |fb |)!︸ ︷︷ ︸

singlet hoppings Mx My

∏
x

Nc!
nx !

(2amq)nx

︸ ︷︷ ︸
chiral condensate ψ̄ψ

∏
`3

w(`3, µ)

︸ ︷︷ ︸
triplet hoppings B̄x By

∏
`f

w̃(`f , µ)

︸ ︷︷ ︸
weight modifications

∏
P

(
β

2Nc

)nP +n̄P

nP !n̄P !︸ ︷︷ ︸
gluon propagation

kb ∈ {0, . . .Nc}, nx ∈ {0, . . .Nc}, `b ∈ {0,±1}, fb = ∂np , fx = 1
2
∑

b |fb |

[G. Gagliardi, Kim & U. arXiv:1710.07564]

color constraint:
nx +

∑
ν̂=±0̂,...±d̂

(
kν̂(x) +

Nc

2
|`ν̂(x)|

)
= Nc + fx

3-flux weight w̃(`f ) involves additional site weights vx and link weights wb(B)

Sign of a configuration factorizes in 3-flux sign and gauge flux sign!

σ(C) =
∏
`f

σ(`f )
∏
`3

σ(`3), σ(`) = (−1)1+w(`)+N−(`)
∏

˜̀

ηµ(x)

-1 for each fermion loop, for each backward hopping (spatial or temporal)
for each winding number (antiperiodic bc), and product of staggered phases
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Typical Configurations

2-dimensional illustration at finite temperature, finite chemical potential, finite
quark mass, finite gauge coupling
simulations run in 3+1 dimensions
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Strong Coupling LQCD at Finite TemperatureStrong Coupling LQCD at Finite TemperatureStrong Coupling LQCD at Finite TemperatureStrong Coupling LQCD at Finite TemperatureStrong Coupling LQCD at Finite Temperature
How to vary the temperature?

aT = 1/Nt is discrete with Nt even
aTc ' 1.5 ⇒ we cannot address the phase transition!

Solution: introduce an anisotropy γ in the Dirac couplings such that at 6= as = a:

LF =
∑
µ

γδµ0

2 ην(x)
(
eµδµ0 χ̄(x)Uν(x)χ(x + µ̂)− e−µδµ0 χ̄(x + µ̂)U†µ(x)χ(x)

)
ZF (mq, µ, γ) =

∑
{k,n,`}

∏
b=(x,µ)

(Nc − kb)!
Nc!kb! γ2kbδµ0

∏
x

Nc!
nx ! (2amq)nx

∏
`

w(`, µ)

Meanfield at strong coupling: as
at
≡ ξ(γ) = γ2, since γ2c = Nt

(d−1)(Nc+1)(Nc+2)
6(Nc+3)

⇒ definition of the temperature: aT = ξ(γ)
Nt

However: Need to know the precise correspondence between ξ ≡ as/at and γ

Nonperturbative result: ξ(γ) ≈ κγ2+ γ2

1+λγ4 , κ = 0.781(1)
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Status of SC-QCD on Anisotropic LatticesStatus of SC-QCD on Anisotropic LatticesStatus of SC-QCD on Anisotropic LatticesStatus of SC-QCD on Anisotropic LatticesStatus of SC-QCD on Anisotropic Lattices
Anisotropic Lattices: ξ ≡ as

at
> 1

idea of anisotropy callibration: determine γ
such that Nsas

!= Ntat ⇒ ξ = Nt
Ns

use conserved current related to pion:
jµ(x) = σ(x)

(
kµ(x)− 3

2 |bx,µ|
)

[Chandrasekharan & Jiang ’03]

relation ξ ↔ γ has been studied
for mq = 0, β = 0, defines unambigously
the continuous time limit: at → 0
(Nt →∞, ξ →∞ at fixed aT = ξ

Nt
)

callibration of γ extended to finite mq,
non-perturbative correction factor
κ(mq) = lim

ξ→∞
ξ
γ2 has simple mass dependence

temperature and chemical potential defined as
aT = κ(m1)[aT ]mf , aµB = κ(m̂)[aµB]mf

To be addressed here:
callibration of γ extended to finite β: ξ(γ, β)

[de Forcrand, U., Vairinhos PRD 97 (2018)]
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Anisotropy Callibration at finite βAnisotropy Callibration at finite βAnisotropy Callibration at finite βAnisotropy Callibration at finite βAnisotropy Callibration at finite β
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Phase Diagram in the Strong Coupling RegimePhase Diagram in the Strong Coupling RegimePhase Diagram in the Strong Coupling RegimePhase Diagram in the Strong Coupling RegimePhase Diagram in the Strong Coupling Regime

Preliminary result before (left) and after (right) taking into account the
non-perturbative anisotropy ξ(γ, β):
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backbending vanished
Tri-critical point no longer at intersection
need detailed analysis of whether the TCP is β-dependent
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Canonical Phase DiagramCanonical Phase DiagramCanonical Phase DiagramCanonical Phase DiagramCanonical Phase Diagram

canonical phase diagram: nB − T plane instead µB − T plane
obtained via the Wang-Landau method
mixed phase ends in tri-critical point (chiral limit)
to do: extended to β > 0
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Probability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependence

Wang-Landau method: probability distribution to high accuracy
allows precise determination of µc
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Probability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependence

Wang-Landau method: probability distribution to high accuracy
allows precise determination of µc
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Probability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependenceProbability Distribution: volume dependence

Wang-Landau method: probability distribution to high accuracy
allows precise determination of µc
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Probability Distribution: β-dependenceProbability Distribution: β-dependenceProbability Distribution: β-dependenceProbability Distribution: β-dependenceProbability Distribution: β-dependence

Wang-Landau method can be extended to finite β
the first order transition weakens with β
the critical chemical potential increases with β

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  0.2  0.4  0.6  0.8  1

µc
β=0.1

/µc
β=0

=1.0038

µc
β=0.2

/µc
β=0

=1.0104

P
(n

B
)

nB

T/TTCP=1.0

β=0.0
β=0.1
β=0.2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.2  0.4  0.6  0.8  1

µc
β=0.1

/µc
β=0

=1.0036

µc
β=0.2

/µc
β=0

=1.0111

P
(n

B
)

nB

T/TTCP=0.9

β=0.0
β=0.1
β=0.2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.2  0.4  0.6  0.8  1

µc
β=0.1

/µc
β=0

=1.0031

µc
β=0.2

/µc
β=0

=1.0091

P
(n

B
)

nB

T/TTCP=0.8

β=0.0
β=0.1
β=0.2

Wolfgang Unger ()Gauge Corrections on Anisotropic Lattices Lattice 2018 14



ConclusionsConclusionsConclusionsConclusionsConclusions

Results:
anisotropy a

at
≡ ξ(γ, β) determined non-perturbatively for mq = 0

allows to measure thermodynamical observables correctly
allows unambigous identification of phase boundary
simulations in continuous time limit ξ →∞ also well defined at β > 0
→ last talk by Marc Klegrewe:
“Continuous Time Simulations of SC-LQCD at Finite Baryon Density”
extension to finite quark mass:
→ talk by Jangho Kim:
“β Dependence of the Nuclear Transition Points at Finite Quark Mass”
first results for the canonical phase diagram for β > 0

Goals: extend range of validity to β > 1
character expansion needed to reduce the sign problem further
requires to solve more complicated Gauge- and Grassmann integrals
→ tensor network, computationally demanding
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Higher order plaquette excitationsHigher order plaquette excitationsHigher order plaquette excitationsHigher order plaquette excitationsHigher order plaquette excitations

So far simulations in the dual formulation limited to plaquette worldsheets
bounded by disconnected quark loops.
Intersection between surfaces generates contributions that require more
sophisticated calculations (non-trivial polynomial integration over SU(Nc ) +
Grassman integration).

We developed analytic techniques to evaluate these NLO β-contributions.
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Higher order β-correctionsHigher order β-correctionsHigher order β-correctionsHigher order β-correctionsHigher order β-corrections

depending on the quark content circulating on the lattice and the plaquette
excitations, several diagrams must be computed
example: for a single plaquette-antiplaquette excitation with np = n̄p = 1
(genuine O(β2) correction) we have several monomer-dimer coverings:

however: difficult to sample (non-local weights)
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Hybrid Monte Carlo CrosschecksHybrid Monte Carlo CrosschecksHybrid Monte Carlo CrosschecksHybrid Monte Carlo CrosschecksHybrid Monte Carlo Crosschecks
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Residual Sign Problem in Dual RepresentationResidual Sign Problem in Dual RepresentationResidual Sign Problem in Dual RepresentationResidual Sign Problem in Dual RepresentationResidual Sign Problem in Dual Representation
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