Symmetries of the Light Hadron Spectrum in High Temperature QCD

Christian Rohrhofer (Osaka Univ.)

Y. Aoki, G. Cossu, H. Fukaya, C. Gattringer, L. Glozman, S. Hashimoto, C.B. Lang, K. Suzuki

Overview

High-temperature phase of QCD (previous talk by K. Suzuki):

- topological susceptibility consistent with zero (3 critical quark mass?)
- $U(1)_A$ susceptibility strongly suppressed

Outline:

- at 1.2 $\rm T_{c}: \rm U(1)_{A}$ and $\rm SU(2)_{L} \times \rm SU(2)_{R}$ symmetries
 - for mesonic screening spectrum
 - for parity doubling in baryon spectrum
 - for baryonic screening spectrum
- at higher temperature:
 - SU(2)_{cs}chiral spin and SU(4) symmetries

Simulation Setup

- → n_f=2 flavor QCD
- → 2.6 GeV cutoff (1/a)
- \rightarrow domain wall fermions with m_{res} < 1 MeV
- \rightarrow quark masses from m_{ud} = 2.6 MeV to 26 MeV
- → temperatures from T = 220 MeV to 1 GeV
 - → pseudo-critical temperature: 175 MeV
 - → point sources for quark propagators

$N_s^3 \times N_t$	β	T [MeV]	T/T_c
$24^3 \times 12$	4.30	220	1.2
$32^3 \times 12$	4.30	220	1.2
$40^3 \times 12$	4.30	220	1.2
$32^3 \times 8$	4.30	330	1.8
$32^3 \times 8$	4.37	220	2.2
$32^3 \times 6$	4.30	440	2.5
$32^3 \times 8$	4.50	480	2.7
$32^3 \times 4$	4.30	660	3.8
$32^3 \times 4$	4.50	960	5.5

Chiral Symmetries at 1.2 T_c

Meson Operators

• local isovector operators: $O_{\Gamma}(x) = \bar{q}(x)(\vec{\tau}\otimes\Gamma)q(x)$

• extract effective mass:

$$\langle O(t)\bar{O}(0)\rangle \sim e^{-mt} + e^{-m(N_t-t)}$$

(or cosh to respect periodicity)

• for screening spectrum:
$$t \to z$$
, $C(n_z) = \sum_{n_x, n_y, n_t} \langle O(n_x, n_y, n_z, n_t) \overline{O}(\mathbf{0}) \rangle$

 $m_{eff}(t) = \ln \left| \frac{C(t)}{C(t+1)} \right|$

Chiral-Parity Group Rep.	Γ	Abbreviation	Symmetries
$\frac{(\frac{1}{2},\frac{1}{2})_a}{(\frac{1}{2},\frac{1}{2})_b}$	$\gamma_5 \ 1$	${PS \over S}$ ($]U(1)_A$
$[(0,1) + (1,0)]_a [(0,1) + (1,0)]_a (\frac{1}{2}, \frac{1}{2})_a (\frac{1}{2}, \frac{1}{2})_b$	$egin{array}{l} \gamma_k\gamma_5 \ \gamma_k \ \gamma_k\gamma_3 \ \gamma_k\gamma_3\gamma_5 \end{array}$	A V T X	$] SU(2)_A$ $] U(1)_A$

Chiral Symmetry of the Mesons Spectrum

Baryon Operators

- local nucleon operators (isospin=1/2, spin=1/2) • parity projection: $N_{\pm} = \frac{(1 \pm \gamma_4)}{2}N$ $\langle N^{\pm}(t)\bar{N}^{\pm}(0)\rangle \sim e^{-m_{\pm}t} + e^{-m_{\mp}(N_t-t)}$ positive parity forward negative parity backward
- for screening spectrum: $t \to z$, $C(n_z) = \sum_{n_x, n_y, n_t} e^{in_t \omega_0} \langle N^{\pm}(n_x, n_y, n_z, n_t) \bar{N}^{\pm}(\mathbf{0}) \rangle$

Chiral-Parity Group Rep.	Operator	Abbreviation	Symmetries
$[(0, \frac{1}{2}) + (\frac{1}{2}, 0)]_a [(0, \frac{1}{2}) + (\frac{1}{2}, 0)]_b$	$(\widetilde{q}q)q \ (\widetilde{q}\gamma_5 q)\gamma_5 q$	$egin{array}{c} N_1 \ N_2 \end{array}$	$\bigcup U(1)_A$
$\begin{array}{c} (\frac{1}{2},1) + (1,\frac{1}{2}) \\ (\frac{1}{2},1) + (1,\frac{1}{2}) \end{array}$	$\begin{array}{c} (\tilde{q}\gamma_{\mu}q)\gamma^{\mu}q\\ (\tilde{q}\gamma_{\mu}\gamma_{5}\tau^{i}q)\gamma^{\mu}\gamma_{5}\tau^{i}q\end{array}$	$egin{array}{c} N_3 \ N_4 \end{array}$	$]SU(2)_A$

$$\tilde{q} = q^T C \gamma_5(i\tau_2)$$

Parity Doubling of Nucleons

Parity Doubling of Nucleons

compare e.g. S.Datta et al, JHEP 1302 (2013) 145; G.Aarts et al, JHEP 1706 (2017) 34

Chiral Symmetry of the Baryon Spectrum

Symmetries at Higher Temperature

Temperature Evolution of Meson Spectrum

SU(4)

 $V_x \leftrightarrow T_t \leftrightarrow X_t \leftrightarrow A_x \quad \leftarrow E_2$ $V_t \leftrightarrow T_x \leftrightarrow X_x \leftrightarrow A_t \quad \leftarrow E_3$

L.Glozman and M.Pak, Phys.Rev. D92 (2015) no.1, 016001 Phys.Rev. D96 (2017) 094501 [arxiv:1707.01881]

Is High Temperature QCD 'more' symmetric?

 E_1, E_2, E_3 groups show multiplet structure..

Chiral Spin and the Lagrangian

$$\Psi \xrightarrow{\mathrm{SU}(2)_{CS}} e^{i\vec{\Sigma}\vec{\theta}/2}\Psi \qquad \vec{\Sigma} = \{\gamma_k, -i\gamma_5\gamma_k, \gamma_5\}$$

free, massless fermions:

covariant derivative:

interacting, massless fermions:

$$\mathcal{L} = \overline{\Psi} i \partial \!\!\!/ \Psi$$
$$D_{\mu} = \partial_{\mu} - igA_{\mu}$$
$$\mathcal{L} = \overline{\Psi} i \partial \!\!\!/ \Psi = \overline{\Psi} i \gamma^{0} D_{0} \Psi + \overline{\Psi} i \gamma^{i} D_{i} \Psi$$

- kinetic term breaks chiral spin
- electric term is invariant
- magnetic term breaks chiral spin

A and **T** mix under chiral spin transformations: use ratio to measure breaking **within** multiplet!

Phys.Rev. D100 (2019) 01xxxx [arxiv:1902.03191]

Interaction within SU(4) multiplets

Sketch of a 'new' Phase Diagram

'stringy fluid' regime at experimental accessible temperatures!

Phys.Rev. D100 (2019) 01xxxx [arxiv:1902.03191]

Conclusions

Above chiral transition at 220 MeV:

- SU(2)_Lx SU(2)_R restored
- U(1), effectively restored
- parity doubling for baryons

At temperatures up to 500 MeV:

- QCD matter approximately SU(4) symmetric
- favors **color-electric** degrees of freedom
- chiral symmetry restoration ≠ deconfinement