Lattice2019, Wuhan

20 Jun 2019, 14:20~

The order of phase transition in three flavor QCD with background magnetic field in crossover regime

Akio Tomiya (RIKEN-BNL)

Heng-Tong Ding (Central China Normal University) Swagato Mukherjee (Brookhaven National Laboratory) Christian Schmidt (Bielefeld University)

Outline

QCD phase transition with background magnetic field Our numerical setup Results Summary

QCD phase transition with background magnetic field

QCD phase transition? Akio Tomiya Background magnetic field could change the order

- 1. Magnetic field is a parameter of phase diagram
- 2. It does not have the sign problem but changes system
- 3. New Critical end point has been suggested for magnetic field

P. Klevansky, et al. PRD39 (1989)

QCD phase transition? It depends on the number of light quarks & mass

Starting from slightly heavier than m^c for three flavor, does phase transition become stronger for eB>>0?

F. R. Brown, et al. Phys.Rev.Lett. 65 (1990), F. Karsch arXiv:hep-ph/0103314, P. Forcrand, et al. 1702.00330, D. Smith, et al. 1109.6729

QCD phase transition?

At
$$m_{ud} = m_s = m \ll \Lambda_{QCD}$$
, QCD is characterized by,
 $\langle \bar{\psi}\psi \rangle = \frac{\partial}{\partial m} \log Z(m)$

It is a function of the inverse coupling β (~temperature). At m \rightarrow 0 limit,

$$\begin{split} |\langle \bar{\psi}\psi \rangle| &= 0 \quad \text{Chiral symmetric phase (high temperature)} \\ |\langle \bar{\psi}\psi \rangle| &\gg 0 \quad \text{Chiral symmetry breaking phase (low temperature)} \end{split}$$

Binder cumulant = indicator of the order of phase transition

$$B_{4}^{\bar{\psi}\psi} = \frac{\langle \delta \Sigma^{4} \rangle}{\langle \delta \Sigma^{2} \rangle^{2}} \quad \delta \Sigma = \bar{\psi}\psi - \langle \bar{\psi}\psi \rangle$$

- At a critical point, B4 becomes scale invariant (independent to box size) 1.
- 2. The value of B4 at a critical point indicates order of phase transition
 - 1. B4 = 3 Crossover (not critical)
 - 2. 1<B4<3 Second order phase transition, value depends on universality
 - 3. B4 = 1 First order phase transition

Magnetic field implementation It is described by integer and it has maximum

Constant-uniform magnetic field along with z direction

$$u_{x}(n_{x}, n_{y}, n_{z}, n_{t}) = \begin{cases} \exp[-iqBN_{x}n_{y}] & (n_{x} = N_{x} - 1) \\ 1 & (\text{Otherwise}) \end{cases}$$

$$\mathcal{Y} \qquad u_{y}(n_{x}, n_{y}, n_{z}, n_{t}) = \exp[iqBn_{x}],$$

$$u_{z}(n_{x}, n_{y}, n_{z}, n_{t}) = 1,$$

$$u_{t}(n_{x}, n_{y}, n_{z}, n_{t}) = 1.$$

$$S = \bar{\psi}(\mathbb{D}[U] + m)\psi \to S(B) = \bar{\psi}(\mathbb{D}[uU] + m)\psi$$

$$qB = a^{-2} \frac{2\pi N_b}{N_x N_y} \quad \text{with} \quad \begin{cases} 0 \le N_b \le \frac{N_x N_y}{4} \\ N_b \in \mathbb{Z} \end{cases}$$

We investigate the chiral phase & confinement transition with magnetic field, via the chiral condensate & Polyakov loops

Our numerical setup

3 volumes, several magnitude of magnetic field

Wilson plaquette gauge action + standard staggered fermions 3 mass degenerate quarks, mass = just above critical (ma=0.03) Charge of quarks is assigned as same as the standard model, $Q_u = 2/3$, $Q_d = Q_s = -1/3$

Ν _σ ³xΝ _τ	a√eB	β	Statistics
8 ³ x4	0.0	5.130 - 5.160	~50k
8 ³ x4	0.9	5.160 - 5.180	~50k
8 ³ x4	1.2	5.170 - 5.195	~50k
16 ³ x4	0.0	5.130 - 5.160	~40k
16 ³ x4	0.9	5.160 - 5.180	~30k
16 ³ x4	1.2	5.170 - 5.190	~50k
24 ³ x4	0.0	5.140 - 5.160	~30k
24 ³ x4	0.44	5.130 - 5.160	~50k
24 ³ x4	0.9	5.165 - 5.175	30k-100k

Observables

 $\langle \bar{\psi}\psi \rangle \chi^{\bar{\psi}\psi}_{disc} B_4^{\bar{\psi}\psi} B_4^{Polyakov}$

Machine:

Fermilab NuclearScience g CenteratCCNU (New supercomputer in Wuhan)

Setup

Critical slowing down for eB > 0

We need more statistics, take care the Jackknife bin size

Results

Results for Nσ=8

It shows hysteresis for eB>0.9 but it has finite volume effects

Results for N σ =16 History for √eB>0.9 suggest first order like transition

0.18

0.16

0.14

0.12

Results for No=24 It has huge critical slowing down, short of statistics

Phase transition with magnetic field

Binder cumulant analysis B4 is scale invariant at the critical regime

E.g. $N\sigma = 16$

 $\langle \bar{\psi}\psi \rangle = \langle \bar{\psi}\psi \rangle (N_{\sigma}, \beta, e\hat{B})$

Binder cumulant for chiral cond. Akio Tomiya It suggests stronger transition than eB = 0. $a\sqrt{eB^*} \sim 0.36$

Lattice2019, Wuhan

Binder cumulant for Polyakov loop

It suggests stronger conf/deconf. transition than $eB = 0. a\sqrt{eB^*} \sim 0.026$

Lattice2019, Wuhan

- 1. Standard staggered, Wilson plaquette in 3 flavor crossover mass regime.
- 2. Systematic study:

Dependence of QCD phase transition on eB and Volume

- 3. Longer autocorrelation for eB>>0 \rightarrow We are in a critical regime
- 4. Binder cumulant suggests, eB direction has a critical endpoint
 →This needs to confirm by collecting ~ 300k trajectories(?)
- 5. N σ =24 has huge critical slowing down \rightarrow N σ =20 instead?
 - \rightarrow We can improve the Binder cumulant analysis
- 6. Does first order survive for the continuum limit?
 - → Further studies are needed (by HISQ or see N_{τ} dep.)
- 7. To overcome critical slowing down, multi-canonical algorithm might be useful. Multipoint reweighting helps to find critical point

