Exploring the QCD phase diagram via reweighting from isospin chemical potential

Sebastian Schmalzbauer
in collaboration with B. Brandt, F. Cuteri, G. Endrődi
Outline

• introduction
 • QCD with isospin asymmetry: phase diagram
 • (spontaneous) symmetry breaking, pion condensation
• dependence of phase boundary on chemical potentials
 • reweighting to $\mu_S > 0$
 • reweighting to $\mu_B > 0$
• decoupling of auxiliary quarks
 • reweighting in m_q
• summary & outlook
QCD phase diagram

(taken from NICA)
QCD phase diagram

QCD with isospin

(taken from NICA)
QCD isospin phase diagram

- baryon chemical potential $\mu_B = 0$
- isospin chemical potential $\mu_I = (\mu_u - \mu_d)/2$
- rich phase structure: [B. Brandt, G. Endrödi, S. Schmalzbauer ’18]
 - vacuum (white)
 - quark-gluon plasma
 - pion condensate (BEC)
 - BCS phase
- dependence of BEC phase boundary on μ_B, μ_S?
Simulation Details

- QCD partition function for $N_f = 2 + 1$ rooted staggered quarks

$$Z = \int \mathcal{D}[U] \ (\det \mathcal{M}_{ud}\mathcal{M}_s)^{1/4} e^{-S_G}$$

- quark matrices with $\eta_5 = (-1)^{n_t+n_x+n_y+n_z}$

$$\mathcal{M}_{ud} = \begin{pmatrix} \phi_{\mu I} + m_{ud} & \lambda \eta_5 \\ -\lambda \eta_5 & \phi_{-\mu I} + m_{ud} \end{pmatrix}, \quad \mathcal{M}_s = \phi_0 + m_s$$
Simulation Details

- QCD partition function for $N_f = 2 + 1$ rooted staggered quarks

$$\mathcal{Z} = \int \mathcal{D}[U] \left(\det \mathcal{M}_{ud} \mathcal{M}_s \right)^{1/4} e^{-S_G}$$

- quark matrices with $\eta_5 = (-1)^{n_t+n_x+n_y+n_z}$

$$\mathcal{M}_{ud} = \begin{pmatrix} \hat{\phi}_{\mu I} + m_{ud} & \lambda \eta_5 \\ -\lambda \eta_5 & -\hat{\phi}_{-\mu I} + m_{ud} \end{pmatrix}, \quad \mathcal{M}_s = \hat{\phi}_0 + m_s$$

- no sign problem due to $\eta_5 \tau_1 \mathcal{M}_{ud} \tau_1 \eta_5 = \mathcal{M}_{ud}^\dagger$:

$$\det \mathcal{M}_{ud} = \det \left(\mathcal{M}^\dagger \mathcal{M} + \lambda^2 \right) \in \mathbb{R}_{>0} \quad \mathcal{M} = \hat{\phi}_{\mu I} + m_{ud}$$
Simulation Details

- QCD partition function for $N_f = 2 + 1$ rooted staggered quarks

$$Z = \int \mathcal{D}[U] \ (\det M_{ud} M_s)^{1/4} e^{-S_G}$$

- quark matrices with $\eta_5 = (-1)^{n_t+n_x+n_y+n_z}$

$$M_{ud} = \begin{pmatrix} \phi_{\mu I} + m_{ud} & \lambda \eta_5 \\ -\lambda \eta_5 & \phi_{-\mu I} + m_{ud} \end{pmatrix}, \quad M_s = \phi_0 + m_s$$

- **no sign problem** due to $\eta_5 \tau_1 M_{ud} \tau_1 \eta_5 = M_{ud}^\dagger$:

$$\det M_{ud} = \det \left(M^\dagger M + \lambda^2 \right) \in \mathbb{R}_{>0} \quad M = \phi_{\mu I} + m_{ud}$$

- first studies [Kogut, Sinclair ’02] [de Forcrand, Stephanov, Wenger ’07]

- in this work: stout-smeared quarks, physical pion masses, tree-level Symanzik improved gluons, 84 lattice
Pion condensation: symmetry breaking

- QCD with light quarks
 \[M_{ud} = \mathcal{O} + m_{ud} \]
- chiral symmetry breaking pattern
 \[SU(2)_V \]
Pion condensation: symmetry breaking

- QCD with light quarks

\[\mathcal{M}_{ud} = \Phi + m_{ud} + \mu \gamma_0 \tau_3 \]

- chiral symmetry breaking pattern

\[\text{SU}(2)_V \rightarrow \text{U}(1)_{\tau_3} \]
Pion condensation: symmetry breaking

- QCD with light quarks
 \[\mathcal{M}_{ud} = \not{\!0} + m_{ud} + \mu \gamma_0 \tau_3 \]
- chiral symmetry breaking pattern
 \[\text{SU}(2)_V \rightarrow \text{U}(1)_{\tau_3} \]
Pion condensation: symmetry breaking

- QCD with light quarks

\[\mathcal{M}_{ud} = \mathcal{D} + m_{ud} + \mu \gamma_0 \tau_3 \]

- chiral symmetry breaking pattern

\[\text{SU}(2)_V \rightarrow \text{U}(1)_{\tau_3} \]

- pion condensate \(\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle = 0 \) (finite volume)

- zero-eigenvalues: accumulation, slowing down (Goldstone mode)
Pion condensation: symmetry breaking

- QCD with light quarks

\[M_{ud} = \hat{0} + m_{ud} + \mu \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2 \]

- chiral symmetry breaking pattern

\[SU(2)_V \rightarrow U(1)_{\tau_3} \rightarrow \emptyset \]

- pion condensate \(\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0 \) (but unphysical value)

- zero-eigenvalues: no, we are safe!
Pion condensation: symmetry breaking

- QCD with light quarks
 \[\mathcal{M}_{ud} = \bar{\psi} + m_{ud} + \mu_1 \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2 \]

- chiral symmetry breaking pattern
 \[SU(2)_V \rightarrow U(1)_{\tau_3} \rightarrow \emptyset \]

- pion condensate \[\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0 \] (but unphysical value)
- zero-eigenvalues: no, we are safe!
- need to extrapolate \(\lambda \rightarrow 0 \) for physical results
Pion condensation: symmetry breaking

- QCD with light quarks
 \[M_{ud} = \not{0} + m_{ud} + \mu \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2 \]

- chiral symmetry breaking pattern
 \[SU(2)_V \rightarrow U(1)_{\tau_3} \rightarrow \emptyset \]

- pion condensate \(\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0 \) (but unphysical value)

- zero-eigenvalues: no, we are safe!

- need to extrapolate \(\lambda \rightarrow 0 \) for physical results
Pion condensation: symmetry breaking

- QCD with light quarks
 \[M_{ud} = \bar{\psi} + m_{ud} + \mu \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2 \]
- chiral symmetry breaking pattern
 \[SU(2)_V \rightarrow U(1)_{\tau_3} \rightarrow \emptyset \]
- pion condensate \(\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0 \) (correct value)
- zero-eigenvalues: no, we are safe!
- need to extrapolate \(\lambda \rightarrow 0 \) for physical results
Pion condensation: symmetry breaking

- QCD with light quarks

\[M_{ud} = \mathcal{D} + m_{ud} + \mu I \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2 \]

- chiral symmetry breaking pattern

\[SU(2)_V \to U(1)_{\tau_3} \to \emptyset \]

- pion condensate \(\langle \bar{\psi} \gamma_5 \tau_1,2 \psi \rangle \neq 0 \) (correct value)

- zero-eigenvalues: no, we are safe!

- need to extrapolate \(\lambda \to 0 \) for physical results

 e.g. reweighting

\[\langle O \rangle_0 = \frac{\langle OR_\lambda \rangle_\lambda}{\langle R_\lambda \rangle_\lambda} \]
Reweighting in μ: motivation

$T = 0$

- until now: $\mu_B, \mu_S = 0$

μ_I cond.

$\mu_{I,c}$

vacuum
Reweighting in μ: motivation

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0$: phase boundary
Reweighting in μ: motivation

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0, \mu_S > 0$: phase boundary
Reweighting in \(\mu \): motivation

- until now: \(\mu_B, \mu_S = 0 \)
- want to explore \(\mu_B > 0, \mu_S > 0 \): phase boundary
- reweight from pure \(\mu_I \) into \(\mu_I - \mu_B \) plane
Reweighting in μ: motivation

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0, \mu_S > 0$: phase boundary
- reweight from pure μ_I into $\mu_I - \mu_B$ and $\mu_I - \mu_S$ plane
Reweighting in μ: motivation

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0, \mu_S > 0$: phase boundary
- reweight from pure μ_I into $\mu_I - \mu_B$ and $\mu_I - \mu_S$ plane
 - look for lines of constant observables
 - check overlap and sign problem
Reweighting in μ: determinant reduction

- for one quark $R = R_\lambda \left(\frac{\det M_{\mu'}}{\det M_\mu} \right)^{1/4}$
- scan over μ_S, μ_B, μ_I: need to compute $\det M_{\mu'}$ for many different μ'
Reweighting in μ: determinant reduction

- for one quark $R = R_{\lambda} \left(\det M_{\mu'} / \det M_{\mu} \right)^{1/4}$
- scan over μ_S, μ_B, μ_I: need to compute $\det M_{\mu'}$ for many different μ'
- **determinant reduction** [Toussaint '90] [Fodor, Katz '02]

\[
\det M_{\mu} = e^{-3V_s L_t \mu} \det \left(P - e^{L_t \mu} \right)
\]

- **analytic μ-dependence**: calculate eigenvalues of P just once
Reweighting in μ: determinant reduction

- for one quark $R = R_\lambda \left(\det M_{\mu'} / \det M_\mu \right)^{1/4}$
- scan over μ_S, μ_B, μ_I: need to compute $\det M_{\mu'}$ for many different μ'
- determinant reduction [Toussaint '90] [Fodor, Katz '02]

$$\det M_\mu = e^{-3V_sL_t\mu} \det \left(P - e^{L_t\mu} \right)$$

- analytic μ-dependence: calculate eigenvalues of P just once
- measure observables in target ensemble
 - $\mu_u/d = \mu_B \pm \mu_I$
 - pion condensate $\pi = \frac{T}{V} \frac{\partial \log Z}{\partial \lambda} \uparrow$ for $\lambda = 0$
 - chiral condensate $\bar{\psi}\psi = \frac{T}{V} \frac{\partial \log Z}{\partial m_{ud}}$ via numerical derivative
 - benchmark with isospin density $n_I = \frac{T}{V} \frac{\partial \log Z}{\partial \mu_I}$
Reweighting to $\mu_S > 0$: results

- no kaon cond. below $\mu_S < 0.865 \, m_K$ [A. Mammarella, M. Mannarelli '15]
- precursor of transition due to finite size / temperature effects
Reweighting to $\mu_S > 0$: results

- no kaon cond. below $\mu_S < 0.865 \, m_K$ [A. Mammarella, M. Mannarelli '15]
- precursor of transition due to finite size / temperature effects
- no visible effect on BEC phase boundary before sign problem gets too strong ($\mu_S \approx 0.7 \, m_K$)
Reweighting to $\mu_B > 0$: results

- reasonable overlap, moderate sign problem
Reweighting to $\mu_B > 0$: results

- reasonable overlap, moderate sign problem
- BEC phase boundary bends towards higher values of μ_I
- unexpected behavior below $\mu_{I,c} = m_\pi/2$ (no Silver Blaze for high μ_B)
- strong μ_B-dependence of temperature / finite size effects?
Complementary approach: decouple auxiliary quarks

- start from degenerate light quarks with isospin asymmetry

\[\pi \text{ cond. } Z_2(m_u, m_d; \mu, -\mu) \]

\[m_\pi / 2 \]
Complementary approach: decouple auxiliary quarks

- start from degenerate light quarks with isospin asymmetry
- increase m_d: change in m_π and $\mu_{I,C}$
Complementary approach: decouple auxiliary quarks

- start from degenerate light quarks with isospin asymmetry
- increase m_d: change in m_π and μ_I, c
- $m_d \to \infty$: decoupling of down-quark: baryonic phase, sign problem

\[Z_1(m_u; \mu) \]
\[Z_2(m_u, m_d; \mu, -\mu) \]
Complementary approach: decouple auxiliary quarks

- start from degenerate light quarks with isospin asymmetry
- increase m_d: change in m_π and $\mu I, c$
- $m_d \to \infty$: decoupling of down-quark: baryonic phase, sign problem
Complementary approach: decouple auxiliary quarks

- start from degenerate light quarks with isospin asymmetry
- increase m_d: change in m_π and $\mu I, c$
- $m_d \to \infty$: **decoupling** of down-quark: baryonic phase, **sign problem**
- via reweighting in m_d: $R = R_\lambda \left[\det(\mathcal{D}_{-\mu} + m_d) / \det(\mathcal{D}_{-\mu} + m_u) \right]^{1/4}$

\[Z_1(m_u; \mu) \]
\[Z_2(m_u, m_d; \mu, -\mu) \]
Complementary approach: decouple auxiliary quarks

- start from degenerate light quarks with isospin asymmetry
- increase m_d: change in m_π and $\mu I, c$
- $m_d \to \infty$: decoupling of down-quark: baryonic phase, sign problem
- via reweighting in m_d: $R = R_\lambda \left[\det(\not{D}_-\mu + m_d)/\det(\not{D}_-\mu + m_u) \right]^{1/4}$
- want to have $N_f = 2 + 1$ theory after decoupling: start from 5-flavor QCD and repeat above procedure for 2 auxiliary quarks
Reweighting in m_q: observations

- adding quarks induces drastic changes: different $a, m_\pi, T, \bar{\psi}\psi, \ldots$
 - prohibits to formulate clear statement
Reweighting in m_q: observations

- adding quarks induces drastic changes: different a, m_π, T, $\bar{\psi}\psi$, ... prohibits to formulate clear statement
- start from higher quark masses to match $\bar{\psi}\psi$ values, lower m_{ud} to physical values together with decoupling auxiliary quarks
Reweighting in m_q: observations

- adding quarks induces drastic changes: different a, m_π, T, $\bar{\psi}\psi$, \ldots prohibits to formulate clear statement

- start from higher quark masses to match $\bar{\psi}\psi$ values, lower m_{ud} to physical values together with decoupling auxiliary quarks

- see changes in the auxiliary quark sector, but we are more interested in the remaining quarks
Reweighting in m_q: observations

- adding quarks induces drastic changes: different $a, m_\pi, T, \bar{\psi}\psi, \ldots$ prohibits to formulate clear statement
- start from higher quark masses to match $\bar{\psi}\psi$ values, lower m_{ud} to physical values together with decoupling auxiliary quarks

- see changes in the auxiliary quark sector, but we are more interested in the remaining quarks
- optimally: multi-parameter-reweighting in m_a and β
Summary

- QCD with isospin chemical potential
- methods, underlying concepts

- dependence of phase boundary on μ_s, μ_B
- approach via decoupling of quarks

Outlook:
- study temperature / finite size effects
Thank you!
for normalized $\sum_i R_i = 1$ and sorted $R_1 \geq \cdots \geq R_N$, estimate overlap γ as [F. Csikor et. al. '04] [C. Schmidt '04]

$$\frac{N\gamma}{2} \sum_{i=1}^{\gamma/2} R_i = 1 - \frac{\gamma}{2}.$$

$$\gamma = \begin{cases}
1 : R_1 = \cdots = R_N & \Rightarrow \text{big overlap} \\
0 : R_1 \gg \sum_{i=2}^{N} R_i & \Rightarrow \text{only one configuration relevant} \\
\end{cases}$$

sign problem: the phase fluctuation of $R = |R|e^{i\phi}$ is

$$\cos(2\phi) = \Re \frac{R^2}{|R|^2}$$

$$\cos(2\phi) = \begin{cases}
1 : \text{no fluctuations} & \Rightarrow \text{no sign problem} \\
0 : \text{strong fluctuations} & \Rightarrow \text{severe sign problem} \\
\end{cases}$$