Exploring the QCD phase diagram via reweighting from isospin chemical potential

Sebastian Schmalzbauer

in collaboration with B. Brandt, F. Cuteri, G. Endrődi

Outline

- introduction
 - QCD with isospin asymmetry: phase diagram
 - (spontaneous) symmetry breaking, pion condensation
- dependence of phase boundary on chemical potentials
 - reweighting to $\mu_{S} > 0$
 - reweighting to $\mu_B > 0$
- decoupling of auxiliary quarks
 - reweighting in m_q
- summary & outlook

QCD phase diagram

2/12

QCD phase diagram

2/12

QCD isospin phase diagram

- baryon chemical potential $\mu_B = 0$
- isospin chemical potential $\mu_I = (\mu_u \mu_d)/2$
- rich phase structure: [B. Brandt, G. Endrödi, S. Schmalzbauer '18]
 - vacuum (white)
 - quark-gluon plasma
 - pion condensate (BEC)
 - BCS phase
- dependence of BEC phase boundary on μ_B, μ_S?

Simulation Details

• QCD partition function for $N_f = 2 + 1$ rooted staggered quarks

$$\mathcal{Z} = \int \mathcal{D}[U] \, \left(\det \mathcal{M}_{ud} \mathcal{M}_s
ight)^{1/4} e^{-S_G}$$

• quark matrices with $\eta_5 = (-1)^{n_t + n_x + n_y + n_z}$

Simulation Details

• QCD partition function for $N_f = 2 + 1$ rooted staggered quarks

$$\mathcal{Z} = \int \mathcal{D}[U] \, \left(\det \mathcal{M}_{ud} \mathcal{M}_s
ight)^{1/4} e^{-S_G}$$

• quark matrices with $\eta_5 = (-1)^{n_t + n_x + n_y + n_z}$

$$\mathcal{M}_{ud} = \begin{pmatrix} \not\!\!\!D_{\mu_I} + m_{ud} & \lambda\eta_5 \\ -\lambda\eta_5 & \not\!\!\!D_{-\mu_I} + m_{ud} \end{pmatrix}, \qquad \mathcal{M}_s = \not\!\!\!D_0 + m_s$$

• no sign problem due to $\eta_5 \tau_1 \mathcal{M}_{ud} \tau_1 \eta_5 = \mathcal{M}_{ud}^{\dagger}$:

$$\det \mathcal{M}_{ud} = \det \left(M^{\dagger} M + \lambda^2 \right) \in \mathbb{R}_{>0} \qquad M = \not{\!\!\!D}_{\mu_I} + m_{ud}$$

Simulation Details

• QCD partition function for $N_f = 2 + 1$ rooted staggered quarks

$$\mathcal{Z} = \int \mathcal{D}[U] \, \left(\det \mathcal{M}_{ud} \mathcal{M}_s
ight)^{1/4} e^{-S_G}$$

• quark matrices with $\eta_5 = (-1)^{n_t + n_x + n_y + n_z}$

• no sign problem due to $\eta_5 \tau_1 \mathcal{M}_{ud} \tau_1 \eta_5 = \mathcal{M}_{ud}^{\dagger}$:

$$\det \mathcal{M}_{\mathit{ud}} = \det \left(M^{\dagger} M + \lambda^2
ight) \in \mathbb{R}_{>0} \qquad M = oldsymbol{D}_{\mu_{\mathit{l}}} + m_{\mathit{ud}}$$

- first studies [Kogut, Sinclair '02] [de Forcrand, Stephanov, Wenger '07]
- in this work: stout-smeared quarks, physical pion masses, tree-level Symanzik improved gluons, 8⁴ lattice

• QCD with light quarks

$$\mathcal{M}_{ud} = \not\!\!\!D + m_{ud}$$

• chiral symmetry breaking pattern

 $SU(2)_V$

• QCD with light quarks

 $\mathcal{M}_{ud} = \not \! D + m_{ud} + \mu_I \gamma_0 \tau_3$

• chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3}$

• QCD with light quarks

 $\mathcal{M}_{ud} = \not \! D + m_{ud} + \mu_I \gamma_0 \tau_3$

• chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3}$

• QCD with light quarks

 $\mathcal{M}_{ud} = \not \! D + m_{ud} + \mu_I \gamma_0 \tau_3$

• chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3}$

- pion condensate $\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle = 0$ (finite volume)
- zero-eigenvalues: accumulation, slowing down (Goldstone mode)

• QCD with light quarks

 $\mathcal{M}_{ud} = \not D + m_{ud} + \mu_1 \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2$

• chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3} \to \varnothing$

 $\lambda \neq 0$

- pion condensate $\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0$ (but unphysical value)
- zero-eigenvalues: no, we are safe!

• QCD with light quarks

 $\mathcal{M}_{ud} = \not D + m_{ud} + \mu_I \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2$

chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3} \to \varnothing$

- pion condensate $\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0$ (but unphysical value)
- zero-eigenvalues: no, we are safe!
- need to extrapolate $\lambda \rightarrow 0$ for physical results

• QCD with light quarks

 $\mathcal{M}_{ud} = \not D + m_{ud} + \mu_I \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2$

chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3} \to \varnothing$

- pion condensate $\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0$ (but unphysical value)
- zero-eigenvalues: no, we are safe!
- need to extrapolate $\lambda \rightarrow 0$ for physical results

• QCD with light quarks

 $\mathcal{M}_{ud} = \not D + m_{ud} + \mu_I \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2$

chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3} \to \varnothing$

- pion condensate $\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0$ (correct value)
- zero-eigenvalues: no, we are safe!
- need to extrapolate $\lambda \rightarrow 0$ for physical results

• QCD with light quarks

 $\mathcal{M}_{ud} = \not D + m_{ud} + \mu_I \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2$

chiral symmetry breaking pattern

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3} \to \varnothing$

- pion condensate $\langle \bar{\psi} \gamma_5 \tau_{1,2} \psi \rangle \neq 0$ (correct value)
- zero-eigenvalues: no, we are safe!
- need to ${\it extrapolate} \ \lambda o 0$ for physical results e.g. reweighting

$$\langle O \rangle_0 = \frac{\langle OR_\lambda \rangle_\lambda}{\langle R_\lambda \rangle_\lambda}$$

• until now: $\mu_B, \mu_S = 0$

• until now: $\mu_B, \mu_S = 0$

• want to explore $\mu_B > 0$: phase boundary

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0$, $\mu_S > 0$: phase boundary

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0$, $\mu_S > 0$: phase boundary
- reweight from pure μ_I into $\mu_I \mu_B$ plane

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0$, $\mu_S > 0$: phase boundary
- reweight from pure μ_I into $\mu_I \mu_B$ and $\mu_I \mu_S$ plane

- until now: $\mu_B, \mu_S = 0$
- want to explore $\mu_B > 0$, $\mu_S > 0$: phase boundary
- reweight from pure μ_I into $\mu_I \mu_B$ and $\mu_I \mu_S$ plane
 - look for lines of constant observables
 - check overlap and sign problem

Reweighting in μ : determinant reduction

• for one quark $R=R_\lambda \left(\det M_{\mu'}/\det M_\mu
ight)^{1/4}$

• scan over $\mu_{S}, \mu_{B}, \mu_{I}$: need to compute det $M_{\mu'}$ for many different μ'

Reweighting in μ : determinant reduction

- for one quark $R=R_{\lambda}\left(\det M_{\mu'}/\det M_{\mu}
 ight)^{1/4}$
- scan over $\mu_{S}, \mu_{B}, \mu_{I}$: need to compute det $M_{\mu'}$ for many different μ'
- determinant reduction [Toussaint '90] [Fodor, Katz '02]

$$\det M_{\mu} = e^{-3V_s L_t \mu} \det \left(P - e^{L_t \mu}
ight)$$

• analytic µ-dependence: calculate eigenvalues of P just once

Reweighting in μ : determinant reduction

- for one quark
$${\it R}={\it R}_{\lambda}\left(\det {\it M}_{\mu'}/\det {\it M}_{\mu}
ight)^{1/4}$$

- scan over $\mu_{S}, \mu_{B}, \mu_{I}$: need to compute det $M_{\mu'}$ for many different μ'
- determinant reduction [Toussaint '90] [Fodor, Katz '02]

$$\det M_{\mu} = e^{-3V_s L_t \mu} \det \left(P - e^{L_t \mu} \right)$$

- analytic µ-dependence: calculate eigenvalues of P just once
- measure observables in target ensemble
 - $\mu_{u/d} = \mu_B \pm \mu_I$
 - pion condensate $\pi = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \lambda} \notin \text{ for } \lambda = 0$
 - chiral condensate $\bar{\psi}\psi = \frac{T}{V} \frac{\partial \log Z}{\partial m_{rd}}$ via numerical derivative
 - benchmark with isospin density $n_I = \frac{T}{V} \frac{\partial \log Z}{\partial \mu_I}$

Reweighting to $\mu_S > 0$ **: results**

• no kaon cond. below $\mu_S < 0.865~m_K$ [A. Mammarella, M. Mannarelli '15]

• precursor of transition due to finite size / temperature effects

Reweighting to $\mu_S > 0$ **: results**

- no kaon cond. below $\mu_S < 0.865~m_K$ [A. Mammarella, M. Mannarelli '15]
- precursor of transition due to finite size / temperature effects
- no visible effect on BEC phase boundary before sign problem gets too strong ($\mu_S \approx 0.7 \ m_K$)

Reweighting to $\mu_B > 0$ **: results**

reasonable overlap, moderate sign problem

Reweighting to $\mu_B > 0$: results

- reasonable overlap, moderate sign problem
- BEC phase boundary bends towards highter values of μ_I
- unexpected behavior below $\mu_{I,c} = m_{\pi}/2$ (no Silver Blaze for high μ_B)
- strong µ_B-dependence of temperature / finite size effects?

• start from degenerate light quarks with isospin asymmetry

- start from degenerate light quarks with isospin asymmetry
- increase m_d : change in m_{π} and $\mu_{I,c}$

- start from degenerate light quarks with isospin asymmetry
- increase m_d : change in m_{π} and $\mu_{I,c}$
- $m_d \rightarrow \infty$: decoupling of down-quark: baryonic phase, sign problem

- start from degenerate light quarks with isospin asymmetry
- increase m_d : change in m_{π} and $\mu_{I,c}$
- $m_d \rightarrow \infty$: decoupling of down-quark: baryonic phase, sign problem

- start from degenerate light quarks with isospin asymmetry
- increase m_d : change in m_π and $\mu_{I,c}$
- $m_d \rightarrow \infty$: decoupling of down-quark: baryonic phase, sign problem
- via reweighting in m_d : $R = R_\lambda \left[\det(\not D_{-\mu} + m_d) / \det(\not D_{-\mu} + m_u) \right]^{1/4}$

- start from degenerate light quarks with isospin asymmetry
- increase m_d : change in m_{π} and $\mu_{I,c}$
- $m_d \rightarrow \infty$: decoupling of down-quark: baryonic phase, sign problem
- via reweighting in m_d : $R = R_\lambda \left[\det(\not D_{-\mu} + m_d) / \det(\not D_{-\mu} + m_u) \right]^{1/4}$
- want to have $N_f = 2 + 1$ theory after decoupling: start from 5-flavor QCD and repeat above procedure for **2** auxiliary quarks

Reweighting in m_q : observations

• adding quarks induces drastic changes: different *a*, m_{π} , *T*, $\bar{\psi}\psi$, ... prohibits to formulate clear statement

Reweighting in *m_q***: observations**

- adding quarks induces drastic changes: different *a*, m_{π} , *T*, $\bar{\psi}\psi$, ... prohibits to formulate clear statement
- start from higher quark masses to match $\bar{\psi}\psi$ values, lower m_{ud} to physical values together with decoupling auxiliary quarks

Reweighting in m_q : observations

- adding quarks induces drastic changes: different *a*, m_{π} , *T*, $\bar{\psi}\psi$, ... prohibits to formulate clear statement
- start from higher quark masses to match $\bar{\psi}\psi$ values, lower m_{ud} to physical values together with decoupling auxiliary quarks

 see changes in the auxiliary quark sector, but we are more interested in the remaining quarks

Reweighting in m_q : observations

- adding quarks induces drastic changes: different *a*, m_{π} , *T*, $\bar{\psi}\psi$, ... prohibits to formulate clear statement
- start from higher quark masses to match $\bar{\psi}\psi$ values, lower m_{ud} to physical values together with decoupling auxiliary quarks

• see changes in the auxiliary quark sector, but we are more interested in the remaining quarks

• optimally: multi-parameter-reweighting in m_a and β

Summary

- QCD with isospin chemical potential
- methods, underlying concepts

- dependence of phase boundary on μ_{s}, μ_{B}
- approach via decoupling of quarks

Outlook:

• study temperature / finite size effects

Thank you!

backup: reliability of reweighting

• for normalized $\sum_{i} R_{i} = 1$ and sorted $R_{1} \ge \cdots \ge R_{N}$, estimate **overlap** γ as [F. Csikor et. al. '04] [C. Schmidt '04]

$$\sum_{i=1}^{V\gamma/2} R_i = 1 - \gamma/2.$$

$$\gamma = \begin{cases} 1 : R_1 = \dots = R_N \Rightarrow \text{big overlap} \\ 0 : R_1 \gg \sum_{i=2}^N R_i \Rightarrow \text{only one configuration relevant } \end{cases}$$

• sign problem: the phase fluctuation of $R = |R|e^{i\phi}$ is

$$\cos(2\phi) = \Re \frac{R^2}{|R|^2}$$

 $\cos(2\phi) = \begin{cases} 1 : \text{ no fluctuations} \Rightarrow \text{ no sign problem} \\ 0 : \text{ strong fluctuations} \Rightarrow \text{ severe sign problem } \end{cases}$