Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

> Tom Blum(UConn/RBRC), Norman Christ (Columbia), Masashi Hayakawa (Nagoya), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Chulwoo Jung (BNL), Christoph Lehner (Regensburg/BNL), Cheng Tu (UConn) (RBC and UKQCD Collaborations)

> > Lattice 2019, Wuhan

June 18, 2019

1 Introduction

2 Hadronic light-by-light (HLbL) scattering contribution

Standard Model Theory: QED+EW+QCD

3 / 25

Experiment - Theory

SM Contribution	$Value \pm Error(imes 10^{11})$	Ref	notes
QED (5 loops)	116584718.951 ± 0.080	[Aoyama et al., 2012]	
HVP LO	6931± <mark>34</mark>	[Davier et al., 2017]	$ ightarrow$ 3.5 σ
	6932.6 ± 24.6	[Keshavarzi et al., 2018]	$ ightarrow$ 3.7 σ
	6925 ± 27	[Blum et al., 2018]	lattice+R-ratio (FJ17), $ ightarrow$ 3.7 σ
HVP NLO	-98.2 ± 0.4	[Keshavarzi et al., 2018]	
		[Kurz et al., 2014]	
HVP NNLO	12.4 ± 0.1	[Kurz et al., 2014]	
HLbL	105 ± 26	[Prades et al., 2009]	
HLbL (NLO)	3 ± 2	[Colangelo et al., 2014]	
Weak (2 loops)	153.6 ± 1.0	[Gnendiger et al., 2013]	
SM Tot	116591820.5 ± 35.6	[Keshavarzi et al., 2018]	
Exp (0.54 ppm)	$116592080\pm {63}$	[Bennett et al., 2006]	
Diff(Exp-SM)	259.5 ± 72	[Keshavarzi et al., 2018]	$ ightarrow$ 3.7 σ

main messages: QCD errors dominate, Δ HLbL $\sim \Delta$ HVP, discrepancy is large

FNAL E989 running, goal to reduce BNL 821 error by 1/4; JPARC E34 approved

1 Introduction

2 Hadronic light-by-light (HLbL) scattering contribution

HLbL in finite and infinite volume QED (+lattice QCD)

Two different methods for treating QED

- **QED**_L: both QED and QCD in discrete, finite volume
- ${\it O}$ QED_{\infty}: QED in infinite volume, continuum. QCD in discrete, finite volume

The hadronic parts of the amplitudes are the same for both methods

Point source method in QCD+pQED (L. Jin) [Blum et al., 2016]

- Must sum over all vertices. Muon line exact with FFT's
- Hadronic part done stochastically. Compute point source propagators at x and y
- Importance sampling is used to choose source locations:
 - Most of the contribution from $r=|x-y|\lesssim 1$ fm
 - Compute for all possible $|x y| \le 5$ lattice units
 - Randomly choose pairs for |x-y|> 5, $p(r)\propto e^{-|r|/100}/|r|^4$
- Moment in \vec{x}_{op} allows computation of $F_2(q^2)$ directly at q=0

• Ward Identity exact for single measurement, so noise doesn't blow up when $q \rightarrow 0$ Techniques produce O(1000) improvement in statistical error over original method

Lattice setup

- Photons: Feynman gauge, ${\sf QED}_L$ [Hayakawa and Uno, 2008] (omit all modes with $ec{q}=0$)
- Gluons: Iwasaki (I) (+DSDR) gauge action (RG improved, plaquette+rectangle)
- muons: $L_s = \infty$ free domain-wall fermions (DWF)
- quarks: Möbius-DWF
- Lanczos, AMA, and zMöbius techniques used to speed up the calculation

2+1f Möbius-DWF, I and I-DSDR physical point QCD ensembles (RBC/UKQCD) [Blum et al., 2014]

	48I	64I	24D	32D	48D
a^{-1} (GeV)	1.73	2.36	1.0	1.0	1.0
<i>a</i> (fm)	0.114	0.084	0.2	0.2	0.2
<i>L</i> (fm)	5.47	5.38	4.8	6.4	9.6
Ls	48	64	24	24	24
$m_\pi~({ m MeV})$	139	135	140	140	140
$m_{\mu}~({ m MeV})$	106	106	106	106	106
meas (con, disco)	65, 99	43, 44	158, 157	71, 70	64, 0

Continuum and ∞ volume limits in QED [Blum et al., 2016]

Test method in pure QED. QED systematics large, but under control

analytic X a = 0 —

 $O(1/L^2)$ finite volume (FV) error (c.f. exponentially suppressed in QCD) Compare to analytic result, 46.5×10^{-10}

$$F_2(a,L) = F_2 \left(1 - rac{b_1}{(m_\mu L)^2} + rac{b_2}{(m_\mu L)^4}
ight) (1 - c_1 a^2 + c_2 a^4) o F_2 = 46.6(2) imes 10^{-10}$$

Quark disconnected contributions

- only top-leftmost diagram does not vanish in SU(3) flavor limit
- Permutations of internal photons not shown
- Gluons within and connecting quark loops not shown
- To ensure loops are connected by gluons, explicit "vacuum" subtraction is required

Leading disconnected contribution

- We use two point sources at y and z, chosen randomly. The point sinks x_{op} and x are summed over exactly on lattice.
- Only point source quark propagators are needed. Compute M point source propagators (including strange) and all M^2 combinations are used to perform the stochastic sum over r = z y (M^2 trick).
- Because of parity, expectation value for (moment of) left loop averages to zero.

1 Introduction

2 Hadronic light-by-light (HLbL) scattering contribution

HLbL contribution [Blum et al., 2017a]

Cumulative sum up to r = |x - y| (left), |y - z| (right)

connected

disconnected

48I discon ⊣→→

HLbL contribution, 139 MeV pion, a = 0.114 fm, L = 5.5 fm [Blum et al., 2017a]

$$egin{array}{rll} a_{\mu}^{cHLbL} &=& (11.60\pm0.96) imes10^{-10}\ a_{\mu}^{dHLbL} &=& (-6.25\pm0.80) imes10^{-10}\ a_{\mu}^{HLbL} &=& (5.35\pm1.35) imes10^{-10} \end{array}$$

Need to extrapolate to the continuum and ∞ volume limits

QED_L continuum and infinite volume extrapolation (preliminary)

• Iwasaki ensembles: $a \rightarrow 0$ ($c_2 = 0$, conn. extrap.: up to 1 fm, 48³ for r > 1 fm) • I-DSDR ensembles: $L \rightarrow \infty$ ($b_2 = 0$)

$$\begin{array}{lll} a_{\mu}^{cHLbL} &=& (27.61 \pm 3.51_{\rm stat} \pm 0.32_{{\rm sys},a^2}) \times 10^{-10} \\ a_{\mu}^{dHLbL} &=& -20.20 \pm 5.65_{\rm stat} \times 10^{-10} \\ a_{\mu}^{HLbL} &=& 7.41 \pm 6.32_{\rm stat} \pm 0.32_{{\rm sys},a^2} \times 10^{-10} \end{array}$$

1 Introduction

2 Hadronic light-by-light (HLbL) scattering contribution

QCD in finite volume, QED in ∞ volume

- $\bullet\,$ Mainz group first proposed QED_∞ method
- QED $_{\infty}$: muon, photons computed in infinite volume, continuum (*c.f.* HVP)
- QED "weight" function $\mathcal{Q}(x, y, z)$ pre-computed
- subtract terms that vanish as a
 ightarrow 0, $L
 ightarrow \infty$ to reduce $O(a^2)$ errors
- Leading FV error is exponentially suppressed (c.f. HVP) instead of $O(1/L^2)$
 - QCD mass gap: $\mathcal{H}(x, y, z, x_{\mathrm{op}}) \sim \exp{-m_{\pi} imes \operatorname{dist}(x, y, z, x_{\mathrm{op}})}$
 - QED weight function does not grow exponentially

- subtraction terms (vanish when a
 ightarrow 0) significantly reduce lattice spacing errors
- $F_2/(\alpha/\pi)^3 = 0.3686(37)(35)$ and 0.1232(30)(28) compared to
- QED perturbation theory results : 0.371 and 0.120

mL = 3.2

 QED_{∞} , 139 MeV pion, a = 0.2 fm, L = 6.4 fm (preliminary)

Combine full lattice result, up to R_{max} , with π^0 contribution from model or lattice from R_{max} to ∞ for most precise result (*c.f.*, QED_L result)

dHLbL, QED $_\infty$ (non-leading diagram), $m_\pi=139$ MeV, a=0.2 fm $_{(preliminary)}$

negligible contribution compared to error on leading contributions

Heavy pion mass, comparison with Mainz group

 $m_{\pi} \approx 340$ MeV, connected diagram only

 a^2 errors small

Is L = 4.7 fm $\approx \infty$?

Need to compute disconnected diagram

1 Introduction

2 Hadronic light-by-light (HLbL) scattering contribution

Hadronic light-by-light summary and outlook

- Lattice QCD+QED calculations done with physical masses, large boxes + improved measurement algorithms
- Physical point calculations published at a = 0.114 fm, 5.5 fm box [Blum et al., 2017a]
- Preliminary a
 ightarrow 0, $L
 ightarrow \infty$ limits taken in QED_L
 - connected, disconnected significant corrections
 - non-leading disconnected diagram makes small contribution
 - improving statistics
 - consistent with model, dispersive results.
- QED_∞ : a o 0, $L o \infty$ (QCD) limits in progress
 - Combine with independent calculation of long distance π^0 contribution
 - a^2 and FV effects smaller than for QED_L
- Heavy pion mass comparison with Mainz
- Unlikely that HLbL contribution will rescue Standard Model

Muon g-2 Theory Initiative aims to have white paper this year, before E989 announces first results

Acknowledgments

- Thanks to Prof. Luchang Jin for help preparing this talk
- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center, RIKEN, USQCD Collaboration, and the ALCF at Argonne National Lab under the ALCC program

1 Introduction

2 Hadronic light-by-light (HLbL) scattering contribution

🧾 Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M. (2012).

Complete Tenth-Order QED Contribution to the Muon g-2.

Phys.Rev.Lett., 109:111808.

Asmussen, N., Green, J., Meyer, H. B., and Nyffeler, A. (2016).

Position-space approach to hadronic light-by-light scattering in the muon g-2 on the lattice.

PoS, LATTICE2016:164.

Bennett, G. et al. (2006).

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL. *Phys.Rev.*, D73:072003.

Blum, T., Boyle, P. A., Glpers, V., Izubuchi, T., Jin, L., Jung, C., Jttner, A., Lehner, C., Portelli, A., and Tsang, J. T. (2018).

Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.

to be published, Phys. Rev. Lett.

Blum, T., Chowdhury, S., Hayakawa, M., and Izubuchi, T. (2015).

Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

Phys.Rev.Lett., 114(1):012001.

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., Jung, C., and Lehner, C. (2017a).

Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass.

Phys. Rev. Lett., 118(2):022005.

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., Jung, C., and Lehner, C. (2017b).

Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment.

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., and Lehner, C. (2016). Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment. Phys. Rev., D93(1):014503.

Blum, T. et al. (2014).

Domain wall QCD with physical quark masses.

- Colangelo, G., Hoferichter, M., Nyffeler, A., Passera, M., and Stoffer, P. (2014).
 Remarks on higher-order hadronic corrections to the muon g?2.
 Phys. Lett., B735:90–91.
- Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2017).

Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g - 2 and $\alpha(m_Z^2)$ using newest hadronic cross-section data. *Eur. Phys. J.*, C77(12):827.

- Gnendiger, C., Stckinger, D., and Stckinger-Kim, H. (2013). The electroweak contributions to $(g - 2)_{\mu}$ after the Higgs boson mass measurement. *Phys.Rev.*, D88:053005.
- Green, J., Gryniuk, O., von Hippel, G., Meyer, H. B., and Pascalutsa, V. (2015). Lattice QCD calculation of hadronic light-by-light scattering.

Phys. Rev. Lett., 115(22):222003.

Hayakawa, M. and Uno, S. (2008).

QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons.

Prog. Theor. Phys., 120:413-441.

Jin, L., Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., and Lehner, C. (2015).

Lattice Calculation of the Connected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment.

In Proceedings, 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2015): Vail, Colorado, USA, May 19-24, 2015.

- Keshavarzi, A., Nomura, D., and Teubner, T. (2018). Muon g - 2 and $\alpha(M_Z^2)$: a new data-based analysis. *Phys. Rev.*, D97(11):114025.
- Kurz, A., Liu, T., Marquard, P., and Steinhauser, M. (2014).

Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order.

Phys.Lett., B734:144–147.

Lehner, C. and Izubuchi, T. (2015).

Towards the large volume limit - A method for lattice QCD + QED simulations. *PoS*, LATTICE2014:164.

Prades, J., de Rafael, E., and Vainshtein, A. (2009).

Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment.