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• E-indep potentail from NBS w.f. 
– Faithful to Phase Shifts by construction 

• Time-dependent HAL method 
– G.S. saturation NOT required 

• Coupled Channel formalism 
– Above inelastic threshold  Essential for YN/YY-forces  
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 NBS wave func. Lat Baryon Force 

(non-locality: derivative expansion) 

HAL QCD method 

Aoki-Hatsuda-Ishii PTP123(2010)89 

N.Ishii et al. (HAL Coll.) PLB712(2012)437 

S. Aoki et al. (HAL Coll.) Proc.Jpn.Acad.B87(2011)509 
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“Signal” from (elastic) excited states 



t~10fm 

t~1fm 

Luscher method vs. HAL method: Issue resolved ! 

HAL method (HAL) :                                                              unbound 
Direct method (PACS-CS (Yamazaki et al.)/NPL/CalLat):              bound 

NN @ heavy quark masses 

T. Iritani et al. (HAL) JHEP10(2016)101, PRD96(2017)034521, PRD99(2019)014514, JHE03(2019)007 

“Pseudo-Plateau” by excited states 

New (improved) calc w/ Direct method (Mainz) :                unbound 

HAL QCD pot = Luscher’s method w/ Eigenstate projection 
                        ≠ Direct method w/ naïve plateau fitting 



Lattice QCD @ near physical point 
• Nf = 2 + 1 gauge configs 

– clover fermion + Iwasaki gauge w/ stout smearing 
– V=(8.1fm)4, a=0.085fm (1/a = 2.3 GeV) 

– m(pi) ~= 146 MeV, m(K) ~= 525 MeV 
– #traj ~= 2000 generated 
 

• Measurement 
– All of NN/YN/YY for central/tensor forces in P=(+) (S, D-waves) 

 

PACS Coll., PoS LAT2015, 075 

ΩΩ, ΝΩ: (quasi) Bound states 
( talk by Gongyo (Fri.)) 



NN-Potentials 3S1-3D1 

• Vc:  repulsive core                                                   
              + long-range attraction  
• Vt:   strong tensor force ! 
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(400conf x 4rot x 96src) 

Preliminary 



ΣΝ (Ι=3/2)  potential in 1S0,  3S1─3D1 
H. Nemura 

(FLQCD2019) 



Lattice QCD @ heavier masses 
• Nf = 2 + 1 gauge configs 

– clover fermion + Iwasaki gauge w/ stout smearing  same action 
– a=0.085fm (1/a = 2.3 GeV) 

– V=(8.1fm)4 w/ 964  V=(6.1fm)4 w/ 724  
– (m(pi), m(K)) ~= (146, 525) MeV  (m(pi), m(K)) ~= (269, 532) MeV  

• Strange quark is retuned so that it is almost at physical mass 
 

– #traj ~= 2,000 generated  #traj ~= 14,000 generated 
 

 
Coll. w/ I. Kanamori, K.-I. Ishikawa 

(~parameter from PACS Coll.) 



NN-Potentials 3S1-3D1 
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[T. Miyamoto] 

Much better S/N 
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Blue:  m(pi) = 146 MeV 
Red:   m(pi) = 270 MeV 

(Preliminary) 

[T. Miyamoto] 

heavier quark masses                         
 weaker tensor forces 

(N.B. sys err by t-dep 
could be larger) 
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Much better S/N 

ΣΝ (Ι=3/2)   
1S0 (27-plet) (10-plet) 

3S1-3D1 



ΣΝ (Ι=3/2)   
3S1-3D1 
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[T. Miyamoto] 

(27-plet) (10-plet) 

Blue:  m(pi) = 146 MeV 
Red:   m(pi) = 270 MeV 

(Preliminary) 

heavier quark masses                         
 weaker tensor forces 

(η/π-exchange ?) 
(N.B. sys err by t-dep 

could be larger) 



ΣΝ (Ι=3/2)   

[T. Miyamoto] 

Blue:  m(pi) = 146 MeV 
Red:   m(pi) = 270 MeV 

(Preliminary) 
(N.B. sys err by t-dep 

could be larger) 

Very preliminary analysis 
for phase shifts 

Effective 3S1 channel 

Dependence on fit-function  
of potential will be studied   

in future 

Strong repulsive core by 
quark-Pauli blocking effect 
 J-PARC E40 exp  

Σ- in neutron star ? 



• Baryon Interactions at m(pi) = 0.27 GeV  
– L ~= 6fm, 1/a ~= 2.3GeV 
– Central/Tensor forces for NN/YN/YY in P=(+) channel 
– Good signal even for small strangeness |S| sectors,                                

e.g., S=0 (NN), S=-1 (ΛN, ΣN) 

• Quark mass dependence of baryon interactions 
– Compared with results @ near physical point (m(pi) = 146 MeV) 
– Lighter/Heavier quark masses  Stronger/Weaker tensor forces 
– Dependence in central forces could be more non-trivial 

• TODO 
– Analysis w/ Misner’s method ( talk by S. Aoki)  
– More statistics, More on Phase shift analysis  
– (better control of inelastic state contaminations) 

 

Summary 
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T. Iritani et al. JHEP10(2016)101  + update 
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B Study sink op dep  
w/ smeared src tuned in single-baryon 

r 

Usual direct method： g(r)=1 only 

No predictive power       
in direct method  

w/ naïve plateau fitting ! 

Operator dependence in the direct method 
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Understand the origin of “pseudo-plateaux” 
We are now ready to “predict” the behavior of m(eff) of ∆E at any “t” 

“prediction” reproduce 
the real data well 

t [a] 
“pseudo-plateaux” 

at t ~ 1fm 

“real plateau”       
at t ~ 10fm 

(E1-E0=50MeV) 



Ideal and real of “optimized” smeared src 
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 Large contaminations from   
2-body elastic excited states 
are “rather natural” 
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BB ~δ(r’) 

Smeared src:  
Optimized to suppress 1-body inelastic states 

Recall the real challenge for two-baryon systems:  
 Noises from 2-body elastic excited states 

 Traditional smeared src is NOT 
  optimized for two-body systems ! 

Detailed implementation of smeared src  
all 6-quarks are smeared at the same spacial point 



• HAL method  HAL pot  2-body wave func. @ finite V 

• 2-body wave func.  optimized operator 
– Applicable for sink and/or src op :  Here we apply for sink op 

• While utilizing info by HAL, formulation is Luscher’s method 
 

Operator optimized for 2-body system by HAL 

wave func. ψ(r) 
HAL-optimized sink op 

ground state 

1st excited state 



Effective energy shift ΔE from “HAL-optimized op”  

HAL-optimized sink op  projected to each state  “True” plateaux 

Ground State 1st excited state 

HAL QCD pot = Lushcer’s method w/ proper projection 

                       ≠ Direct method w/ naïve plateau fitting 
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