The ρ-resonance from Lattice QCD
with $N_f = 2 + 1 + 1$ dynamical quark flavors

M. Werner C. Helmes C. Jost B. Kostrzewa C. Liu L. Liu B. Metsch
M. Petschlies M. Ueding C. Urbach

37th Annual International Symposium on Lattice Field Theory

2019-06-18
Motivation

- Investigate $\pi\pi$ scattering in $l = 1, \ell = 1$
- Experimentally well-known
- Test-bed for elusive resonances
- Phase shift from Lüscher method
- Here: Chiral and continuum extrapolation

[Protopopescu et al. 1973, PRD 7, 1279]
ETMC ensembles
Baron et al. 2010 [1004.5284]; Baron et al. 2011 [1005.2042]

- 13 ensembles
- Different M_π, L
- Three β values
- Iwasaki gauge
- $N_f = 2 + 1 + 1$ twisted mass fermions
 - Automatic $O(a)$ improvement [Frezzotti & Rossi 2004]
 - Isospin broken at $O(a)$ Potential $2\pi_0$ pollution, not visible
Spectrum extraction

Correlator matrix
- $\pi(d - q)\pi(q)$ with $i\gamma_5$
- $\rho(d)$ with $i\gamma_i$ and $\gamma_0\gamma_i$

Using multiple
- relative integer momenta q
- total momenta $p = 2\pi d/L$
- irreps Γ

$\frac{4}{\pi} \leq d^2 \leq 4$
$q^2 \leq 4$, depending on d^2

Energy extraction
- Thermal state removal via *weight and shift*
- Also without, estimates systematic error
- GEVP with up to 6×6
- Fitting principal correlators with one range by hand
Spectrum on one ensemble (A40.32)

![Graph showing spectrum with and without thermal state removal.](image)
Zeta function singularities

Use Lüscher formalism to convert energies E_{CM} to phase shifts δ_1

- Lüscher’s Zeta function has singularities at non-interacting energies
- Resampling distributions might cross them
- Crossing is unphysical, prohibits usage of energy level
- Jackknife distribution narrower than bootstrap distribution
- Still need to check for singularity crossing
Breit-Wigner fit to phase shifts
Brown & Goble, PRL 20, 346 (1968)

One fit per ensemble

Phase shift:

\[
\tan \delta_1 = \frac{g_{\rho \pi \pi}^2}{6\pi} \frac{p^3(E_{\text{CM}})}{E_{\text{CM}}(M_\rho^2 - E_{\text{CM}}^2)}, \quad p(E_{\text{CM}}) = \sqrt{E_{\text{CM}}^2/4 - M_\pi^2}
\]

Mass dependent width:

\[
\Gamma_\rho = \frac{2}{3} \frac{g_{\rho \pi \pi}^2}{4} \frac{p^3(M_\rho)}{M_\rho^2}
\]

Fit parameters: \(g_{\rho \pi \pi} \) and \(M_\rho \)
Phase shift on one ensemble
Chiral extrapolation

Djukanovic et al. 2009 [0902.4347]; Djukanovic et al. 2009 [1001.1772]

Combined fit to M_ρ and Γ_ρ with

$$Z = (M_\rho - i \Gamma_\rho / 2)^2$$

Fit model from EFT with vector meson dominance:

$$a^2 Z = \frac{p_{r_0/a}^{-2}}{a} \left((p_1 + i p_2) + p_3 \left(\frac{p_{r_0/a} a M_\pi}{a M_\pi} \right)^2 - p_4 \sqrt{p_1 + i p_2} \left(\frac{p_{r_0/a} a M_\pi}{a M_\pi} \right)^3 \right.$$

$$\left. + (p_5 + i p_6) \frac{p_{r_0/a}^{-2}}{a} \right)$$

- $p_1 + i p_2$ is ρ pole in chiral limit
- p_4 comes from $\omega \rho \pi$ coupling
- $p_{r_0/a}$ Sommer parameter, prior not shown
- Last summand is complex lattice artifact
Chiral extrapolation

Djukanovic et al. 2009 [0902.4347]; Djukanovic et al. 2009 [1001.1772]
Results & discussion

▶ Our result:

\[M_\rho = 769(19) \text{ MeV}, \quad \Gamma_\rho = 129(7) \text{ MeV} \]

▶ Experimental result [PDG 2018]:

\[M_\rho = 775.26(25) \text{ MeV}, \quad \Gamma_\rho = 149.1(8) \text{ MeV} \]

▶ Lattice artifact not resolvable

▶ Systematic effects:
 ▶ Long extrapolation (lowest \(M_\pi = 280 \text{ MeV} \))
 ▶ Perhaps parametrization of Breit-Wigner introduces underestimated width?
Our phase shift with experiment

Protopopescu et al. 1973, PRD 7, 1279

\[\delta_1 \text{[rad]} \]

Protopopescu et al.

\[M_\pi = 135 \text{ MeV} \]
\[M_\pi = 220 \text{ MeV} \]
\[M_\pi = 305 \text{ MeV} \]
\[M_\pi = 390 \text{ MeV} \]
Comparison to other lattice publications

\begin{itemize}
 \item Alexandrou et al.
 \item Andersen et al.
 \item Experiment
 \item Fu et al. (MILC)
 \item HadSpec
 \item PACS-CS
 \item This work
\end{itemize}
Summary & Outlook

Summary:

- Chiral and continuum extrapolation of ρ mass and width
- Lattice artifacts not resolvable
- Mass agrees with experiment, width two standard deviations too low

Outlook:

- Global fit from unitarized χ PT:
 IAM phase shift fit at NLO and NNLO
- Ensemble with physical M_π
- Including higher partial waves
The ρ-resonance from Lattice QCD
with $N_f = 2 + 1 + 1$ dynamical quark flavors

M. Werner C. Helmes C. Jost B. Kostrzewa C. Liu L. Liu B. Metsch
M. Petschlies M. Ueding C. Urbach

37th Annual International Symposium on Lattice Field Theory

2019-06-18
Relative momentum

\[k = \frac{E_{CM}^2}{4} - M^2_{\pi} \]

\[w_{lm}(q, \gamma) = \frac{1}{\pi^{3/2} \sqrt{2l + 1}\gamma^{-1}q^{-l-1} \mathcal{O}_{lm}(1, q^2)}, \quad q = k \frac{L}{2\pi} \]

Singularities of \(w_{lm}(q, \gamma) \) at non-interacting energy levels
Singularity structure in Lüscher’s Zeta function \((d^2 = 1)\)

\[
\text{acot}(\text{Re}(w_{00}))
\]
Singularity crossing with bootstrap samples

- **Black** bootstrap distribution
- **Red** central value
- **Green** singularity crossing
- **Gray** central M_π

- Bootstrap distribution is wide
- Crossing unphysical
- Use jackknife