The light baryon spectrum in the continuum limit

Gunnar Bali University of Regensburg

with

Sara Collins, Peter Georg, Benjamin Gläßle, Piotr Korcyl, Andreas Rabenstein, Daniel Richtmann, Andreas Schäfer, Jakob Simeth, Wolfgang Söldner, Philipp Wein (RQCD)

Lattice 2019

Wuhan, June 20, 2019

Outline

Motivation

- Scale determination
- Check the validity range of SU(3) BChPT
- Determine LECs: *F*, *D*, σ terms etc.
- Preparatory step for the determination of SM parameters

Outline

- CLS simulations
- Chiral and continuum limit extrapolations
- Results
- Summary

Generic problem: critical slowing down of local updating algorithms:

Open boundary conditions in time

OBC in time [S Schaefer, M Lüscher, 1105.4749] allow the flow of topological objects (instantons) into and out of the lattice.

SU(7) gauge theory. $a \approx 0.094$ fm. Problem becomes worse at large N_c : Instanton action: $8\pi^2 N_c / \lambda$. Higher cost to create an (anti)instanton! A Amato, G Bali, B Lucini, 1512.00806

Disadvantage: Breaking of translational invariance in time near the boundaries. \Rightarrow Discard part of the simulated volume.

4 / 23

CLS members/groups at

- HU Berlin
- CERN
- TC Dublin
- Mainz
- UA Madrid
- Milano Bicocca

- Münster
- Odense/CP3 Origins
- Regensburg
- Roma I + II
- Wuppertal
- DESY/Zeuthen

Coordinated generation of gauge ensembles using openQCD https://luscher.web.cern.ch/luscher/openQCD/ [M Lüscher, S Schaefer, 1206.2809].

 $N_f = 2 + 1$ flavours of non-perturbatively order-*a* improved Wilson fermions on tree level Symanzik improved glue.

Keep it simple and local: no smeared action etc.

Simulation strategy

Simulate along $m_s + 2m_\ell = \text{const}$ [QCDSF+UKQCD: W Bietenholz et al, 1003.1114], and $\hat{m}_s \approx \text{const}$ [G Bali et al, 1606.09039; 1702.01035], enabling Gell-Mann-Okubo/SU(3) and SU(2) ChPT extrapolations.

(Right: old, linear unconstrained baryon mass fits at fixed $a \approx 0.086$ fm.)

Ensemble overview

E: 192 · 96³, J: 192 · 64³, D: 128 · 64³, N: 128 · 48³, C: 96 · 48³, S: 128 · 32³, H: 96 · 32³, B: 64 · 32³, U: 128 · 24³. ??5? and rqcd0?? have PBC. Typically 6000 – 10000 MDUs.

Effective masses for m_N and m_Ω on D200

approx 0.064 fm, M_\pipprox 190 MeV, M_Kpprox 480 MeV

We realized different bin sizes and extrapolated the integrated autocorrelation time in 1/binsize to arrive at the final results.

 $^{|}$ Tr M vs. $m_u=m_d=m_\ell$

Volumes

 $M_{\pi}L < 4, \ 4 \le M_{\pi}L < 5, \ M_{\pi}L \ge 5.$

Finite size effects

Pseudoscalar meson masses in SU(3) ChPT:

$$egin{aligned} &M_{\pi}^2(L) = M_{\pi}^2 \left[1 + rac{1}{2} h(\lambda_{\pi}, M_{\pi}^2) - rac{1}{6} h(\lambda_{\eta_8}, M_{\eta_8}^2)
ight], \ &M_K^2(L) = M_K^2 \left[1 + rac{1}{3} h(\lambda_{\eta_8}, M_{\eta_8}^2)
ight], \end{aligned}$$

$$h(\lambda_M, M_M^2) = \frac{4M_M^2}{(4\pi F_0)^2} \sum_{\mathbf{n}\neq\mathbf{0}} \frac{K_1(\lambda_M |\mathbf{n}|)}{\lambda_M |\mathbf{n}|}, \quad \lambda_M = LM_M$$

Octet baryon masses in covariant SU(3) BChPT:

$$m_B(L) = m_B + \frac{2m_0}{(4\pi F_0)^2} \sum_{M \in \{\pi, K, \eta_B\}} g_{O,M} M_M^2 \int_0^\infty dx \sum_{\mathbf{n} \neq \mathbf{0}} K_0 \left(\lambda_M |\mathbf{n}| \sqrt{1 - x + \frac{m_0^2}{M_M^2} x^2} \right)$$

 m_0 and F_0 : octet baryon mass and pion decay constant in the chiral limit. $g_{B,M}$ are known, quadratic functions of F and D, e.g., $g_{N,\pi} = (3/2)(D+F)^2 = (3/2)\mathring{g}_A^2$.

FSE: expectation vs. data

Literature values for F_0 , F, D, m_0 .

In some cases pion FSE can be as big $\widehat{\mathcal{T}}_{\substack{\mathbb{S}^{LF}\\\mathbb{S}^{LF}_{0,25}}}^{0}$ as half the statistical error.

On our volumes baryon mass FSE are negligible.

0.35

0.2

₫

Gunnar Bali (Regensburg)

 $M_{\pi} \approx 280 \text{ MeV}$ $M_{\pi} \approx 220 \text{ MeV}$

Order-a improvement

For an order-a improved spectrum, it is sufficient to improve the action:

$$S_{\text{lattice}}^{(0)} = S_{\text{continuum}} + \underbrace{aS^{(1)} + a^2S^{(2)} + \dots}_{\text{unwanted "physics" at scales } \sim 1/a}$$

We subtract $aS^{(1)}$ from both sides. Three types of improvement terms:

- Lagrangian counter term $\propto i c_{SW} a \bar{\psi}_f \sigma_{\mu\nu} F_{\mu\nu} \psi_f$ Known non-perturbatively [J Bulava, S Schaefer, 1304.7093].
- Quark masses: [T Bhattacharya et al, hep-lat/0511014]

$$\operatorname{Tr}\widehat{M} = Z_m r_m [\operatorname{Tr} M + a d_m \operatorname{Tr} (M^2) + a \overline{d}_m (\operatorname{Tr} M)^2],$$

$$\widehat{m}_s - \widehat{m}_\ell = Z_m[(m_s - m_\ell) + ab_m(m_s^2 - m_\ell^2) + a\overline{b}_m \operatorname{Tr} M(m_s - m_\ell)].$$

Relevant for determinations of renormalized quark masses.

b_m known non-perturbatively [P Korcyl, G Bali, 1607.07090]. Improvement of the coupling $g^2 \mapsto g^2(1 + ab_g \operatorname{Tr} M/N_f)$. Problem if $\operatorname{Tr} M = m_s + 2m_\ell \neq \text{const.}$

The effect of b_g cancels from ratios of hadron masses at each fixed $(\beta, \kappa_{\ell}, \kappa_s)$. Therefore, we extrapolate the combination $\sqrt{8t_0}m_B$. Gunnar Bali (Regensburg) Baryon spectrum Rece

Continuum limit extrapolation

Define

$$\overline{m} = \frac{1}{3} \operatorname{Tr} M = \frac{1}{3} (2m_{\ell} + m_s), \quad \delta m = m_s - m_{\ell}.$$

Then

$$\overline{M}^2 := \frac{1}{3}(2M_K^2 + M_\pi^2) \approx 2B_0\overline{m}, \quad \delta M^2 := 2(M_K^2 - M_\pi^2) \approx 2B_0\delta m.$$

We rescale into the dimensionless quantities

$$\overline{\mathbf{M}} = \sqrt{8t_0} \,\overline{M} \,, \quad \delta \mathbb{M} = \sqrt{8t_0} \delta M \,, \quad \mathbf{m}_B = \sqrt{8t_0} m_B \,, \quad \mathbf{a} = \frac{a}{\sqrt{8t_0^*}} \,,$$

where $B \in \{N, \Lambda, \Sigma, \Xi, \Delta, \Sigma^*, \Xi^*, \Omega\}$. t_0^* is t_0 at the point where $\phi_4 = 1.11 = (3/2)\phi_2$ [M Bruno, T Korzec, S Schaefer, 1608.08900]. $t_0^* = t_{0,ph}$, up to $\mathcal{O}(a)$ effects. Continuum limit extrapolation: (term independent of mass, term $\propto \overline{M}^2 \sim \overline{m}$ and terms $\propto \delta M^2 \sim \delta m$)

$$\mathrm{m}_{B}(\mathrm{M}_{\pi},\mathrm{M}_{K},\mathrm{a}) = \mathrm{m}_{B}(\mathrm{M}_{\pi},\mathrm{M}_{K},0) \left[1+c \ \mathrm{a}^{2}+ar{c} \ \mathrm{a}^{2}\overline{\mathrm{M}}^{2}+\delta c_{B} \ \mathrm{a}^{2}\delta\mathrm{M}^{2}
ight]$$

Chiral extrapolation

Our parametrizations include:

Linear = NLO SU(3) BChPT:

$$\mathrm{m}_{B}(\mathrm{M}_{\pi},\mathrm{M}_{K},0)=\mathrm{m}_{0}+\overline{\mathrm{b}}\ \overline{\mathrm{M}}^{2}+\delta\mathrm{b}_{B}\ \delta\mathrm{M}^{2}\,,$$

where $m_0 = m_0 \sqrt{8t_{0,ch}}$ and the \mathbb{b} differ from the standard $b/\sqrt{8t_{0,ch}}$ parameters by $\mathcal{O}(a)$ effects and $\overline{\mathbb{b}}$ also by the quark mass dependence of t_0 [O Bär, M Golterman, 1312.4999] (through $t_{0,ph}/t_{0,ch}$). SU(3) constraints:

$$\delta b_N = \frac{2}{3}(3b_F - b_D), \quad \delta b_\Sigma = \frac{4}{3}b_D, \quad \delta b_\Xi = -\frac{2}{3}(3b_F + b_D), \quad \delta b_\Lambda = -\frac{4}{3}b_D.$$

 \Rightarrow 10 parameters: m_0 , \overline{b} , b_D , b_F , c, \overline{c} , δc^B to fit 4 baryon masses on a large set of ensembles (at present over 100 data points).

SU(3) HBChPT and BChPT in EOMS at NNLO:

only 2 additional parameters: \mathbb{F} , \mathbb{D} (total of 6 + 4 + 2 = 12).

Decuplet. NLO: 9 parameters, NNLO: 10 parameters.

Baryon spectrum

Chiral extrapolation 2

Order p^3 (NNLO), octet baryons

$$\begin{split} \mathbf{m}_{B}(\mathbf{M}_{\pi},\mathbf{M}_{\mathrm{K}},\mathbf{0}) &= \mathbf{m}_{0} + \overline{\mathbf{b}} \ \overline{\mathbf{M}}^{2} + \delta \mathbf{b}_{B} \ \delta \mathbf{M}^{2} \\ &+ \mathbf{g}_{B,\pi} f_{O}\left(\frac{\mathbf{M}_{\pi}}{\mathbf{m}_{0}}\right) + \mathbf{g}_{B,\mathcal{K}} f_{O}\left(\frac{\mathbf{M}_{\mathcal{K}}}{\mathbf{m}_{0}}\right) + \mathbf{g}_{B,\eta_{8}} f_{O}\left(\frac{\mathbf{M}_{\eta_{8}}}{\mathbf{m}_{0}}\right). \end{split}$$

BChPT in EOMS regularization:

$$f_O(x) = -2x^3 \left[\sqrt{1 - \frac{x^2}{4}} \arccos\left(\frac{x}{2}\right) + \frac{x}{2}\ln(x) \right]$$

HBChPT:

$$f_O(x) = -\pi x^3.$$

In preparation: effect of decuplet baryon loops within small scale expansion.

Order p^2 BChPT (preliminary)

N, A, Σ , Ξ , $\hat{m_s} \approx \hat{m}_{s,\mathrm{ph}}$, $m_s + 2m_\ell \approx$ phys., $m_s = m_\ell$

 $v^2/d.o.f. = 2.23538$ 3 2.82.6 $\frac{\frac{1}{2.4}}{2.2}$ 2 1.81.6 $0.4 \\ 8t_0 M_{\pi}^2$ 0.10.20.30.50.60.70.80

Data projected to a = 0 and along quark mass trajectories according to the fit. Scale set using $\sqrt{8t_0^*} = 0.413$ fm. Black circles: experiment.

Gunnar Bali (Regensburg)

Baryon spectrum

Order p^3 covariant BChPT (preliminary)

Scale determined from $m_{\Xi} = 1316.9(3) \text{ MeV}$: $\sqrt{8t_{0,ph}} = 0.4128(22) \text{ fm}$.

Gunnar Bali (Regensburg)

Order p^3 HBChPT (preliminary)

Scale determined from $m_{\Xi} = 1316.9(3) \text{ MeV}$: $\sqrt{8t_{0,ph}} = 0.4129(22) \text{ fm}$.

Gunnar Bali (Regensburg)

19 / 23

Decuplet baryons in order p^3 HBChPT (preliminary)

Scale set to $\sqrt{8t_{0,ph}} = 0.413 \text{ fm. } \Omega$ is spot on. Problem: strong decays (unstable baryons not shown). Plan: covariant BChPT including octet baryon loops.

The continuum limit (order p^3 BChPT, preliminary)

σ terms (preliminary)

Results on σ_s are parametrization-, not data-driven since we do not vary m_s near the physical m_ℓ .

Pion σ terms can be determined with more confidence:

 $\begin{aligned} \sigma_{\pi N} &= 41(2)(2)(?) \, \text{MeV}, & \sigma_{\pi \Lambda} &= 29(2)(1)(?) \, \text{MeV}, \\ \sigma_{\pi \Sigma} &= 23(1)(1)(?) \, \text{MeV}, & \sigma_{\pi \Xi} &= 13(1)(0)(?) \, \text{MeV}. \end{aligned}$

Errors are statistical and difference between BChPT and HBChPT. The fit range dependence and impact of other parametrizations are yet to be investigated.

LECs seem reasonably stable but D/F > 2: BChPT parametrization describes the data vs. BChPT describes the data?

This question can be addressed, varying fit ranges and combining with results on baryon structure.

Summary

• Several limits need to be taken:

 $t \to \infty$, $m_q \to m_q^{\rm phys}$, $V = a^4 N_t N_s^3 \to \infty$, $a \to 0$.

- Wilson fermions are theoretically clean.
- Chiral symmetry will be restored in the continuum limit.
 Drawback: unlike for overlap fermions that have a chiral symmetry at a > 0, order a improvement is needed and operator mixing is more involved.
- Within CLS we implement full order *a* improvement and vary a^2 by a factor ≈ 5 . This is possible using open boundary conditions in time.
- At $a^{-1} \gtrsim 4 \text{ GeV}$ the physical point will require $N_s = 128$. This is expensive. Instead, we carry out joint extrapolations along two quark mass trajectories, only realizing the physical point for $a^{-1} \lesssim 3 \text{ GeV}$.
- Here I showed some results on the baryon spectrum.
- Soon: SU(3) and SU(2) LECs, light and charmed hadron spectroscopy etc.