Pion-Pion Scattering with Elongated Boxes

Chris Culver

Department of Physics George Washington University

The 37th International Symposium on Lattice Field Theory

2 Pion-Pion Scattering

ヨト イヨト

- LQCD gives finite volume energies
- Quantization Conditions(Lüscher's Formula) give phase shifts
- IAM extrapolates results to physical pion mass

- N_f=2 NHYP Clover Fermions, Luscher Weisz Action
- $\bar{q}q$ and meson-meson interpolators
- Variational Method
- LapH Smearing

[Lüscher and Wolff 1990]

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

[Blossier et al. 2009]

[Peardon et al. 2009]

э

- Scan kinematic region of resonances
- \vec{p} quantized in units of $2\pi/L$
- Reduce numerical cost by elongating in a single direction
- Elongation selected specifically for the ρ

Ensembles

Symmetry Groups: \mathcal{O}_h , \mathcal{D}_{4h}

ensemble	$N_t imes N_{x,y}^2 imes N_z$	η	$a[{ m fm}]$	$N_{ m cfg}$	aM_{π}	$am_{u/d}^{pcac}$	af_{π}
$\overline{\mathcal{E}_1}$	$48 \times 24^2 \times 24$	1.00	0.1210(2)(24)	300	0.1931(4)	0.01226(5)	0.0648(8)
\mathcal{E}_2	$48 \times 24^2 \times 30$	1.25	-	-	0.1944(3)	0.01239(4)	0.0651(6)
\mathcal{E}_3	$48 \times 24^2 \times 48$	2.00	-	-	0.1932(3)	0.01227(5)	0.0663(6)
\mathcal{E}_4	$64 \times 24^2 \times 24$	1.00	0.1215(3)(24)	400	0.1378(6)	0.00612(5)	0.0600(10)
\mathcal{E}_5	$64 \times 24^2 \times 28$	1.17	-	378	0.1374(5)	0.00620(4)	0.0600(8)
\mathcal{E}_6	$64 \times 24^2 \times 32$	1.33	-	400	0.1380(5)	0.00619(4)	0.0599(10)

=

• Exact two body unitarity

[Truong 1988] [Pelaez and Rios 2006] [Gómez Nicola, Palaez, Rios 2008] [Pelaez and Rios 2010]

- Matches χPT to NLO
- Correct resonance behavior with m_{π}

• We fit all lattice energies, m_{π} , f_{π} with cross correlations

I=2 Energy Spectrum

Finite Volume Spectrum

Chris Culver

Pion-Pion Scattering with Elongated Boxes

9 / 17

Phase Shifts & IAM Fit Result

Chris Culver

Pion-Pion Scattering with Elongated Boxes

10 / 17

Physical Pion Mass Extrapolation

Experimental data from [Protopopescu 1973]

Pion-Pion Scattering with Elongated Boxes 11 / 17

Chris Culver

Physical Quantities

Picture adapted from [Helmes et al. 2019]

	Single Channel	IAM Global	Exp.
$m_ ho$ [MeV]	720(1) - i120.8(8)	$740^{+3}_{-4} - i69^{+2}_{-1}$	775.26(.25) - <i>i</i> 149.1(8)
m_{σ} [MeV]	$440^{+10}_{-15} - i240^{+20}_{-20}$	$450^{+3}_{-3} - i230^{+7}_{-5}$	$449^{+22}_{-16} - i275^{+12}_{-12}$

12 / 17

э

- Conclusions
 - Pion-pion scattering complete up to inelastic threshold
 - Elongated boxes give cheap access to different energies
 - σ resonance determined more precisely with global fit
 - Rho resonance still below expected value
- Outlook
 - $\pi^+\pi^+\pi^+$ Predictions Done [Mai 2019]
 - $a_1(1260)$ with 3 pion operators

э

э

Non-Interacting Poles

æ

Distribution of LEC's

17 / 17