Bethe-Salpeter Wave Functions of Hybrid Charmonia

Yunheng Ma

On Lattice 2019, Wuhan, China

Ying Chen, Zhaofeng Liu, Ming Gong, Wei Sun, Yunheng Ma

Institute of High Energy Physics, CAS

University of Chinese Academy of Sciences
Implication of Hybrid Charmonia

“Excited and exotic charmonium spectroscopy from lattice QCD”, Liuming Liu et al. [arXiv:1204.5425v2[hep-ph]]

— Four lightest hybrids as a supermultiplet in channel $1^{-+}, (0,1,2)^{-+}$.

“Exotic vector charmonium and its leptonic decay width”, Ying Chen et al. [arXiv:1604.03401v1[hep-lat]]

— Bethe–Salpeter Amplitude as a tool to recognize hybrid state out.
Basic Point of View

• A hybrid is a $\bar{c}c$ with a **gluonic** component
• Spin of $\bar{c}c$ in these four could be **spin singlet and triplet**, respectively
• Their masses are in near degenerate
• Hybrids are well-defined in quenched approximation
• Quenched gauge configurations used

<table>
<thead>
<tr>
<th>β</th>
<th>ξ</th>
<th>a_s</th>
<th>$La_s(fm)$</th>
<th>$L^3 \times T$</th>
<th>N_{conf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>5</td>
<td>0.222(2)(11)</td>
<td>3.55</td>
<td>$16^3 \times 160$</td>
<td>500</td>
</tr>
<tr>
<td>2.8</td>
<td>5</td>
<td>0.138(1)(7)</td>
<td>3.31</td>
<td>$24^3 \times 192$</td>
<td>200</td>
</tr>
</tbody>
</table>

• The configurations have been fixed into **Coulomb gauge**
Hybrid-like Operators & Bethe-Salpeter (BS) Wave Functions

- We construct a group of hybrid-like interpolating operators as

\[
\begin{align*}
O^{(H1)}_i(x, t; r) &= \bar{c}^a(x, t) \gamma_5 B^{ab}_i(x + r, t) c^b(x, t), & 1^- \\
O^{(H2)}_i(x, t; r) &= \bar{c}^a(x, t) \gamma_i B^{ab}_i(x + r, t) c^b(x, t), & 0^- \\
O^{(H3)}_i(x, t; r) &= \bar{c}^a(x, t) \varepsilon_{ijk} \gamma_j B^{ab}_i(x + r, t) c^b(x, t), & 1^- \\
O^{(H4)}_i(x, t; r) &= \bar{c}^a(x, t) \varepsilon_{ijk} \gamma_j B^{ab}_i(x + r, t) c^b(x, t). & 2^- \\
\end{align*}
\]

\(r \) is the displacement between \(\bar{c}c \) and gluon (represented by chromomagnetic field \(B^{ab}_i \))

- The Bethe-Salpeter amplitude is defined as \(\langle 0 | O^H(r) | H \rangle \)
Data Analysis Strategy

- The real two-point correlation functions we calculated

\[C(r, t) = \langle 0 | O^H(r, t) O^W(\tau) | 0 \rangle \]

- Simultaneous fitting with many \(C(r, t) \) under multi-exponential model. \(r \) corresponds to different separation displacement

\[C(r, t) = \sum_i \Phi_i(r) \exp\{-m_i t\} \]

\(\Phi_i(r) \) is proportional to BS wave functions.

- Fit window is

\[t \in [t_{\text{min}}, t_{\text{max}}] \]

Shift \(t_{\text{min}} \) with \(t_{\text{max}} \) fixed to find a stable region.

Exam. \(1^{-+}, \beta = 2.4 \)
Exotic Channel 1^{--}

$\beta = 2.4$

$\beta = 2.8$
Compare to Shroedinger Functions of A Harmonic Oscillator

$\beta = 2.4$
2^{-+}

$\beta = 2.4$

$\beta = 2.8$
Why no conventional 2^{-+} states found?

According to

"Lattice study on η_{c2} and $X(3872)$" (Y.B.Yang et al. PhysRevD.87.014501 [arXiv:1206.2086 [hep-lat]]),

a $q\bar{q}B$ type (F-type, red dots in figure) operator hardly couples to conventional states like $\eta_{c2}(2^{-+})$. Instead, it couples to a state around 4.43 GeV mostly (which we treat as a ground state of hybrids here).

\[
\begin{align*}
D\bar{D}-\text{type} & : |\epsilon_{ijk}| \bar{q}_5 B_i D_j q \\
F\text{-type} & : |\epsilon_{ijk}| \bar{q}^a \gamma_i q^b B^{ab}
\end{align*}
\]
\[\beta = 2.4 \]

\[\beta = 2.8 \]

The graphs show the function \(\phi(r)/\phi(0) \) as a function of \(r/\text{fm} \) for different energy levels at \(\beta = 2.4 \) and \(\beta = 2.8 \). The energy levels are indicated as follows:

- \(2.961(7) \text{GeV} \)
- \(3.51 \text{GeV} \)
- \(4.44(6) \text{GeV} \)
- \(5.14(4) \text{GeV} \)
- \(8.5(2) \text{GeV} \)

For \(\beta = 2.4 \):

- \(2.97(1) \text{GeV} \)
- \(3.4(1) \text{GeV} \)
- \(4.39(8) \text{GeV} \)
- \(5.66(5) \text{GeV} \)
- \(8.9(2) \text{GeV} \)
\[\beta = 2.4 \]

\[\beta = 2.8 \]
Masses From Fitting (Unit: GeV)

<table>
<thead>
<tr>
<th></th>
<th>1−</th>
<th>0+</th>
<th>1+</th>
<th>2+</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta = 2.4)</td>
<td>3.07(1)</td>
<td>3.045(7)</td>
<td>2.961(7)</td>
<td>2.97(1)</td>
<td>0</td>
</tr>
<tr>
<td>(\beta = 2.8)</td>
<td>3.5(1)</td>
<td>3.7(1)</td>
<td>3.5(1)</td>
<td>3.4(1)</td>
<td>0</td>
</tr>
<tr>
<td>(\beta = 2.4)</td>
<td>4.39(7)</td>
<td>4.3(1)</td>
<td>4.44(6)</td>
<td>4.39(8)</td>
<td>0</td>
</tr>
<tr>
<td>(\beta = 2.8)</td>
<td>5.36(4)</td>
<td>5.90(5)</td>
<td>5.14(4)</td>
<td>5.66(5)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta = 2.4)</td>
<td>8.4(2)</td>
<td>8.9(2)</td>
<td>8.5(2)</td>
<td>8.9(2)</td>
<td>2</td>
</tr>
</tbody>
</table>
Hybrid 1S (states around 4.3GeV)

$\beta = 2.4$

$1^+ 4.265(7) \text{GeV}$
$2^+ 4.360(8) \text{GeV}$
$0^+ 4.44(6) \text{GeV}$
$1^- 4.39(7) \text{GeV}$

$\beta = 2.8$

$1^+ 4.17(1) \text{GeV}$
$2^+ 4.26(1) \text{GeV}$
$0^+ 4.39(8) \text{GeV}$
$1^- 4.3(1) \text{GeV}$
Hybrid 2S (states around 5.5GeV)

$\beta = 2.4$

$1^+\ 5.57(6)\text{GeV}$
$2^+\ 5.60(6)\text{GeV}$
$0^+\ 5.14(4)\text{GeV}$
$1^-\ 5.38(4)\text{GeV}$

$\beta = 2.8$

$1^+\ 5.38(5)\text{GeV}$
$2^+\ 5.59(5)\text{GeV}$
$0^+\ 5.66(5)\text{GeV}$
$1^-\ 5.90(5)\text{GeV}$
Hybrid $3S(?)$ (states above 7GeV)

$\beta = 2.4$

$\beta = 2.8$
Conventional States($J/\psi, \psi', \eta_c, \eta_c'$, maybe)

\[\beta = 2.4 \]

\[\beta = 2.8 \]
Conclusion

• Clear nodal behavior of BS functions with respect to the spatial displacement reflects r in the operators is a meaningful dynamical variable.

• It implies that the inner structure of hybrid charmonia is a localized $\bar{c}c$ kernel surrounded by a gluonic component, just like a halo.

• The hybrid states distribute across 1^{--} and $(0,1,2)^{--}$ have similar structure, and their masses are almost in degenerate around $4.3\text{GeV}(\text{hybrid 1S})$ and $5.5\text{GeV}(\text{hybrid 2S})$, respectively.
End of Story