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We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e

+
e

� !
hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum
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FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵

2
QED. We achieve a precision of 2%, for

the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
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Table 4.4 The eighth-order mass-dependent QED contribution from 11 gauge-invariant groups to
muon g − 2 [46], whose representatives are shown in Fig. 4.5. The mass-dependence of A(8)

3µ is

A(8)
3µ (mµ/me,mµ/mτ )

Group A(8)
2µ (mµ/me) A(8)

2µ (mµ/mτ ) A(8)
3µ

I(a) 7.74547 (42) 0.000032 (0) 0.003209 (0)

I(b) 7.58201 (71) 0.000252 (0) 0.002611 (0)

I(c) 1.624307 (40) 0.000737 (0) 0.001811 (0)

I(d) −0.22982 (37) 0.000368 (0) 0.000000 (0)

II(a) −2.77888 (38) −0.007329 (1) 0.000000 (0)

II(b) −4.55277 (30) −0.002036 (0) −0.009008 (1)

II(c) −9.34180 (83) −0.005246 (1) −0.019642 (2)

III 10.7934 (27) 0.04504 (14) 0

IV(a) 123.78551 (44) 0.038513 (11) 0.083739 (36)

IV(b) −0.4170 (37) 0.006106 (31) 0

IV(c) 2.9072 (44) −0.01823 (11) 0

IV(d) −4.43243 (58) −0.015868 (37) 0

Sum 132.6852 (65) 0.04234 (10) 0.06272 (4)

(18) (18) (2072) (120) (18) (2)

Fig. 4.11 Some typical tenth order contributions to aℓ including fermion loops. In brackets the
number of diagrams of the given type

4.1.5 Five–Loop QED Contribution

Here the number of diagrams (see Fig. 4.11) is in the 10 000. Alone the universal A(10)
1

term has contributions from 12 672 diagrams. The latter are grouped into six gauge-
invariant sets I–VI, which are further subdivided into 32 gauge-invariant subsets
depending on the type of lepton loops involved. Set V is the set without closed
lepton loops. It is the largest and most difficult set to evaluate consisting of 6354
diagrams, and has been accurately evaluated only recently by Aoyama et al. [48].
The 31 sets with closed lepton loops consist of 6318 vertex diagrams and have
been presented in Refs. [76–85]. The results of all ten subsets of Set I have been
confirmed by Ref. [86, 87] by analytic and/or semi-analytic methods (see Table4.10).
The five-loop contribution originally was evaluated using renormalization group
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Table 5.7 Higher order contributions from diagrams (a)–(c) (in units 10−11)

a(2a)µ a(2b)µ a(2c)µ ahad(2)µ Ref.

–199 (4) 107 (3) 2.3 (0.6) –90 (5) [108]

–211 (5) 107 (2) 2.7 (0.1) –101 (6) [202]

–209 (4) 106 (2) 2.7 (1.0) –100 (5) [11]

–207.3 (1.9) 106.0 (0.9) 3.4 (0.1) –98 (1) [117]

–207.5 (2.0) 104.2 (0.9) 3.0 (0.1) –100.3 (2.2) [15]

–206.13 (1.30) 103.49 (0.63) 3.37 (0.05) –99.27 (0.67) [6, 88]

(a) 3a (b) 3b (c) 3b (d) 3c

(e) 3c (f) 3c (g) 3b,lbl (h) 3d

Fig. 5.45 A sample of leading NNLO hadronic vacuum polarization diagrams

FSR, the latter is included already in the data and no additional contribution has to
be taken into account. In more recent analyses this contribution is usually included
in the leading hadronic contribution (5.29) as the π+π−γ channel (see Table5.3).

Results obtained by different groups, for so far unaccounted higher order vacuum
polarization effects, are collected in Table5.7. We will adopt the estimate

ahad(2)µ = (−99.27± 0.67) × 10−11 (5.132)

obtained with the compilation [16]. For the electron only group (2a) yields a signif-
icant contribution [202]: a(2a)e = −0.2210(12) × 10−11.

5.1.13 Next-to-Next Leading Order Hadronic Contributions

Recently the next-to-next-to-leading order (NNLO), O(α4), HVP contributions have
been evaluated for the first time by [206–208] (see also [209]). The relevant kernels
have been calculated by appropriate asymptotic expansion methods. The kernels
have been calculated for the following groups of diagrams displayed in Fig. 5.45:

• K(3a): one hadronic insertion; up to two additional photons to the LO Feynman
diagram; contains also the contributions with one or two closed muon loops and
the light-by-light-type diagram with a closed muon loop.
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Fig. 4.19 Some of the relevant electroweak two–loop diagrams exhibiting closed fermion loops
in the unitary gauge, f = (νe, νµ, ντ , ) e,µ, τ , u, c, t, d, s, b with weak doublet partners f ′ =
(e,µ, τ , ) νe, νµ, ντ , d, s, b, u, c, t of course the neutrinos (in brackets) do not couple directly to
the photon and hence are absent in the triangular subgraphs

γWW amplitudes do not vanish. In fact for the γWW triangle charge conservation
only allows one orientation of the fermion loop.

Diagrams (a) and (b), with an internal photon, appear enhanced by a large loga-
rithm. In fact the lepton loops contributing to the γγZ vertex lead to corrections

a(4) EW
µ ([ f ]) ≃

√
2Gµ m2

µ

16π2

α

π
2T3 f Ncf Q2

f

[
3 ln

M2
Z

m2
f ′
+ C f

]
(4.51)

in which m f ′ = mµ if m f ≤ mµ and m f ′ = m f if m f > mµ and

C f =

⎧
⎨

⎩

5/2 for m f < mµ

11/6 − 8/9 π2 for m f = mµ

−6 for m f > mµ .

For an individual fermion f the contribution is proportional to Ncf Q2
f a f . In [144]

only lepton loops were taken into account, and it is well known that the triangular
subdiagram has an Adler–Bell–Jackiw (ABJ) or VVA anomaly [145], which cancels
if all fermions are included. The anomaly cancellation is mandatory in a renormal-
izable theory and it forces the fermions in the SM to come in families of leptons
and quarks [146]. The latter compensate the anomaly of the former. The cancellation
condition of the SM reads

∑
f
Ncf Q2

f a f = 0 , (4.52)

and such a cancellation is expected also for the leading short distance logarithms
proportional to ln MZ and in fact this has been checked to happen on the level of the
quark parton model (QPM) for the 1st and 2nd fermion family [147, 148].

Assuming dressed constituent quarks masses Mu,Md > mµ, the QPM result for
the first family reads [148]
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on the expense of an extra contribution from the circle. In [196] p(s) is chosen to be
of the form p(s) = a + b s and on the circle Π̂ ′

γ(s)||s|=s1 is approximated byΠOPE(s)
which is proportional to (5.22) (see Sect. 5.1.6): e2 ΠOPE(s) = Π ′NP

γ (s = −Q2). By
this the available information on R(s) in the interval I gets erased (suppressed by a
factor 2.5) and gets transported onto the circle as a weight factor which multiplies
ΠOPE, a quantity which is not well determined as we learn from Fig. 5.18 and the
discussion there. Even so the information on R(s) in the interval I is unsatisfactory,
it is hard to belief that suppressing the available true information at the end should
provide a more reliable estimate of ahad,LOµ (s1).

5.1.12 Hadronic Higher Order Contributions

At next-to-leading (NLO) order, O(α3), there are several classes of hadronic con-
tributions with typical diagrams shown in Fig. 5.43. They have been estimated first
in [105]. Classes (a) to (c) involve leading HVP insertions and may be treated using
DRs together with experimental e+e−–annihilation data. Class (d) involves lead-
ing QED corrections of the charged hadrons and related problems were discussed
at the end of Sect. 5.1.7 on p. 379, already. The last class (e) is a new class of
non–perturbative contributions, the hadronic light–by–light scatteringwhich is con-
strained by experimental data only for one exceptional line of phase space. The
evaluation of this contribution is particularly difficult and it will be discussed in the
next section.

The O(α3) hadronic contributions from classes (a), (b) and (c) may be evaluated
without particular problems as described in the following.

At the three–loop level all diagrams of Fig. 4.3 which involve closed muon–loops
are contributing to the hadronic corrections when at least one muon–loop is replaced
by a quark–loop dressed by strong interactions mediated by virtual gluons.

(a) (b) (c)

(d) (e)

Fig. 5.43 Hadronic higher order contributions: a–c involving LO vacuum polarization, d involving
HO vacuum polarization and e involving light-by-light scattering
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Fig. 5.45 A sample of leading NNLO hadronic vacuum polarization diagrams

FSR, the latter is included already in the data and no additional contribution has to
be taken into account. In more recent analyses this contribution is usually included
in the leading hadronic contribution (5.29) as the π+π−γ channel (see Table5.3).

Results obtained by different groups, for so far unaccounted higher order vacuum
polarization effects, are collected in Table5.7. We will adopt the estimate

ahad(2)µ = (−99.27± 0.67) × 10−11 (5.132)

obtained with the compilation [16]. For the electron only group (2a) yields a signif-
icant contribution [202]: a(2a)e = −0.2210(12) × 10−11.

5.1.13 Next-to-Next Leading Order Hadronic Contributions

Recently the next-to-next-to-leading order (NNLO), O(α4), HVP contributions have
been evaluated for the first time by [206–208] (see also [209]). The relevant kernels
have been calculated by appropriate asymptotic expansion methods. The kernels
have been calculated for the following groups of diagrams displayed in Fig. 5.45:

• K(3a): one hadronic insertion; up to two additional photons to the LO Feynman
diagram; contains also the contributions with one or two closed muon loops and
the light-by-light-type diagram with a closed muon loop.
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γWW amplitudes do not vanish. In fact for the γWW triangle charge conservation
only allows one orientation of the fermion loop.
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only lepton loops were taken into account, and it is well known that the triangular
subdiagram has an Adler–Bell–Jackiw (ABJ) or VVA anomaly [145], which cancels
if all fermions are included. The anomaly cancellation is mandatory in a renormal-
izable theory and it forces the fermions in the SM to come in families of leptons
and quarks [146]. The latter compensate the anomaly of the former. The cancellation
condition of the SM reads

∑
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and such a cancellation is expected also for the leading short distance logarithms
proportional to ln MZ and in fact this has been checked to happen on the level of the
quark parton model (QPM) for the 1st and 2nd fermion family [147, 148].
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the first family reads [148]
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non–perturbative contributions, the hadronic light–by–light scatteringwhich is con-
strained by experimental data only for one exceptional line of phase space. The
evaluation of this contribution is particularly difficult and it will be discussed in the
next section.

The O(α3) hadronic contributions from classes (a), (b) and (c) may be evaluated
without particular problems as described in the following.

At the three–loop level all diagrams of Fig. 4.3 which involve closed muon–loops
are contributing to the hadronic corrections when at least one muon–loop is replaced
by a quark–loop dressed by strong interactions mediated by virtual gluons.

(a) (b) (c)

(d) (e)

Fig. 5.43 Hadronic higher order contributions: a–c involving LO vacuum polarization, d involving
HO vacuum polarization and e involving light-by-light scattering

ℓ

ae
exp = 115 965 218 073 28( ) ⋅10−14

ae
SM = 115 965 218 161 1( ) 1( ) 23( ) ⋅10−14

QED
Had. + EW

D. Hanneke, 2010; T. Aoyama, 2018; R.H. Parker, 2018

0.2ppb

0.2ppb
∼ 2.5σ

3

α em



Hadronic Vacuum Polarisation

4

Given the present exper. and theor. (LQCD) accuracy,  an important source of 
uncertainty are long distance electromagnetic and SU(2) breaking corrections
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Fig. 29. Hadronic higher order VP contributions: a)-c) involving LO vacuum polarization, d) involving HO vacuum polarization
(FSR of hadrons).

perturbative QCD prediction. Less problematic is the space–like (Euclidean) region −q2 → ∞, since it is
away from thresholds and resonances.

The time–like quantity R(s) intrinsically is non-perturbative and exhibits bound states, resonances, in-
stanton effects (η′) and in particular the hadronization of the quarks. In applying pQCD to describe real
physical cross–sections of hadro–production one needs a “rule” which bridges the asymptotic freedom regime
with the confinement regime, since the hadronization of the colored partons produced in the hard kicks into
color singlet hadrons eludes a quantitative understanding. The rule is referred to as quark hadron dual-
ity 15 [231,232], which states that for large s the average non–perturbative hadron cross–section equals the
perturbative quark cross–section:

σ(e+e− → hadrons)(s) ≃
∑

q
σ(e+e− → qq̄, qq̄g, · · ·)(s) , (129)

where the averaging extends from the hadron production threshold up to s–values which must lie sufficiently
far above the quark–pair production threshold (global duality). Qualitatively, such a behavior is visible in
the data Fig. 22 above about 2 GeV between the different flavor thresholds sufficiently above the lower
threshold. A glance at the region from 4 to 5 GeV gives a good flavor of duality at work. Note however that
for precise reliable predictions it has not yet been possible to quantify the accuracy of the duality conjecture.
A quantitative check would require much more precise cross–section measurements than the ones available
today. Ideally, one should attempt to reach the accuracy of pQCD predictions. In addition, in dispersion
integrals the cross–sections are weighted by different s–dependent kernels, while the duality statement is
claimed to hold for weight unity. One procedure definitely is contradicting duality reasonings: to “take pQCD
plus resonances” or to “take pQCD where R(s) is smooth and data in the complementary ranges”. Also
adjusting the normalization of experimental data to conform with pQCD within energy intervals (assuming
local duality) has no solid foundation. Nevertheless, the application of pQCD in the regions advocated
in [229] seems to be on fairly solid ground on a phenomenological level. A more conservative use of pQCD
is possible by going to the Euclidean region and applying the Adler function [233] method as proposed in
Refs. [234,165,235]. As mentioned earlier, the low energy structure of QCD also exhibits non–perturbative
quark condensates. The latter also yield contributions to R(s), which for large energies are calculable by the
operator product expansion of the current correlator Eq. (64) [236]. The corresponding ⟨mq q̄q⟩/s2 power
corrections in fact are small at energies where pQCD applies [234,82] and hence not a problem in our context.

4.2. Higher Order Hadronic Vacuum Polarization Corrections

At order O(α3) there are several classes of hadronic VP contributions with typical diagrams shown in
Fig. 29. They have been estimated first in [187]. Classes (a) to (c) involve leading hadronic VP insertions and
may be treated using DRs together with experimental e+e−–annihilation data. Class (d) involves leading
QED corrections of the charged hadrons and correspond to the inclusion of hadronic final state radiation
(FSR).

The O(α3) hadronic contributions from classes (a), (b) and (c) may be evaluated without particular
problems as described in the following.

15Quark–hadron duality was first observed phenomenologically for the structure function in deep inelastic electron–proton
scattering [230].
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Fig. 10. The universal third order contribution to aµ. All fermion loops here are muon–loops. Graphs 1) to 6) are the light–by—
light scattering diagrams. Graphs 7) to 22) include photon vacuum polarization insertions. All non–universal contributions follow
by replacing at least one muon in a closed loop by some other fermion.

set of diagrams Fig. 12. The latter 518 diagrams without fermion loops also are responsible for the largest
part of the uncertainty in Eq. (52). Note that the universal O(α4) contribution is sizable, about 6 standard
deviations at current experimental accuracy, and a precise knowledge of this term is absolutely crucial for
the comparison between theory and experiment.
• The universal 5–loop QED contribution is still largely unknown. Using the recipe proposed in Ref. [37],
one obtains the following bound

A(10)
1 = 0.0(4.6) , (53)

for the universal part as an estimate for the missing higher order terms.
As a result the universal QED contribution may be written as

auni
ℓ = 0.5

(α

π

)

− 0.328 478 965 579 193 78 . . .
(α

π

)2

+1.181 241 456 587 . . .
(α

π

)3
− 1.9144(35)

(α

π

)4
+ 0.0(4.6)

(α

π

)5

23

450 500 550 600 650 700

a
µ

HVP(ud) * 1010

ETMC '18

RBC/UKQCD '18

BMW '18

CLS/Mainz '19

FNAL/HPQCD/MILC '19

PACS '19

MILC '19≳ 2%

≳ 0.4%

The hadronic vacuum polarization contribution to aµ from full lattice QCD

Bipasha Chakraborty,1 C. T. H. Davies,1, ⇤ P. G. de Oliveira,1 J. Koponen,1 and G. P. Lepage2

(HPQCD collaboration), †

R. S. Van de Water3

1
SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

2
Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA

3
Fermi National Accelerator Laboratory, Batavia, IL, USA

(Dated: May 30, 2017)

We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e

+
e

� !
hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum

⇤
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FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵

2
QED. We achieve a precision of 2%, for

the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
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e (f) · 1014 �aHVP

µ (f) · 1010 �aHVP
⌧ (f) · 108

ud 1.9 (0.8) 7.1 (2.5) 3.0 (1.1)
s �0.002 (0.001) �0.0053 (0.0033) 0.001 (0.002)
c 0.004 (0.001) 0.0182 (0.0036) 0.032 (0.006)
total 1.9 (1.0) 7.1 (2.9) 3.0 (1.3)
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feler, and H. Wittig, Journal of High Energy Physics
(2017), 10.1007/JHEP10(2017)020, arXiv:1705.01775v2
[hep-lat].

[37] D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, and
S. Simula, 1707.03019v2.

[38] P. Boyle, V. Gülpers, J. Harrison, A. Jüttner, C. Lehner,
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f aLO-HVP
e,f ⇥ 1014 aLO-HVP

µ,f ⇥ 1010 aLO-HVP
⌧,f ⇥ 108

ud 174.3(2.6)(2.3)(0.0)(0.0)(1.4)(5.1) 647.6(7.5)(8.0)(0.1)(0.0)(5.1)(15.0) 281.3(0.8)(1.6)(0.0)(0.2)(1.3)(2.0)
s 13.6(0.0)(0.1)(�)(0.0)(0.1)(�) 53.7(0.0)(0.2)(�)(0.0)(0.4)(�) 36.1(0.0)(0.1)(�)(0.2)(0.2)(�)
c 3.5(0.0)(0.0)(�)(0.0)(0.0)(�) 14.7(0.0)(0.1)(�)(0.0)(0.1)(�) 22.6(0.0)(0.2)(�)(1.0)(0.1)(�)
disc �3.8(0.3)(0.1)(0.1)(0.0)(0.0)(0.1) �12.8(1.1)(0.5)(0.2)(0.0)(0.1)(1.5) �2.4(0.1)(0.1)(0.0)(0.0)(0.0)(0.2)

TABLE S8. Final lattice results for individual flavor contributions to the LO-HVP componenents of the anomalous magnetic
moments of the `=e, µ and ⌧ leptons. Results for aLO-HVP

`,I=0,1 and aLO-HVP
` are given in Table I of the main text. In the results

presented, the first error bar is statistical, the second is the systematic uncertainty associated with the continuum extrapolation,
the third with the bounding procedure described in Sec. 2 (where applicable), the fourth with the matching to perturbation
theory discussed in Sec. 6, the fifth with the lattice spacing uncertainty discussed in Sec. 3 and the sixth, where applicable,
with FV corrections. Dashes in error brackets indicate that the corresponding systematic error does not a↵ect the result in
question.

f aLO�HVP
e (f) · 1014 aLO�HVP

µ (f) · 1010 aLO�HVP
⌧ (f) · 108

ud 169.1 (4.9) 619.0 (17.8) 266.9 (4.1)
s 13.49 (0.77) 53.1 (2.5) 36.2 (1.1)
c 3.50 (0.16) 14.75 (0.56) 25.8 (0.8)
disc �3.8 (0.4) �12 (4) �2.4 (0.3)

from the main text, to obtain the individual flavor con-
tributions to aLO-HVP

` , for `=e, µ, ⌧ . Thus, we take
from Table S2 of Sec. 4 the lower vituality contribu-
tions, aLO-HVP

`,f (Q<Qmax), obtained through the con-
tinuum limit of our lattice results. For the match-
ing term, �`(Qmax) ⇧̂f (Q2

max), we take the phase-space
factor, �`(Qmax) of Eq. (S6), from Table S4. We
obtain the nonperturbative quantity ⇧f (Q2

max) as de-
scribed in Sec. 5 and take the results from Table S3.
Finally, the high virtuality, perturbative contributions
�pertaLO-HVP

`,f (Q>Qmax) are computed as explained in
Sec. 7 and given in Table S5. To the f=ud, disc contri-
butions, we have to add the FV corrections discussed in
Sec. 8.

Our final results for the individual flavor contributions
to the LO HVP component of the lepton anomalous mag-
netic moments are given in Table S8. These results in-
clude systematic errors associated with the continuum
extrapolation, with our bounding procedure for the ud
and disconnected contributions, with the matching to
perturbation theory and with FV e↵ects. These contri-
butions are meant to be isospin limit quantities. Thus,
we do not apply any QED or (md � mu) corrections to
them. These are reserved for the total LO-HVP contri-

bution, aLO-HVP
` , given in Table I of the main text.

In Fig. S7 we plot our results for the individual flavor
contributions aLO-HVP

µ,f , f=ud, s, c, disc, together with the
only other ones available from the lattice [29, 30, 33, 34,
36]. Of those, only the results of [29, 34, 37] are obtained
from Nf=2+1+1 simulations. Those of [36] come from
Nf=2 and those of [30, 33] from Nf=2 + 1 simulations.
For some reason, [30] do not include FV errors which are
2% of the I=0 contribution in our calculation, and should
be at least as large in that reference.

As the figure shows, our ud contribution to aLO-HVP
µ is

significantly larger than the results of [34, 36]. In partic-
ular, the di↵erence with the only other Nf=2+ 1+ 1 re-
sult published for this contribution is 2.2 combined stan-
dard deviations. Our result for the charm contribution
is fully compatible with the two other lattice results. Fi-
nally, our result for aLO-HVP

µ,disc is compatible with the only
other determination [30] and, even with the inclusion of
a FV uncertainty, it has a total error of 15%. This error
represents 0.26% of aLO-HVP

µ which means that it barely
needs to be improved for determining aLO-HVP

µ at the
0.2% level, as will be required by future experiments.
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We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e

+
e

� !
hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum
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FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵

2
QED. We achieve a precision of 2%, for

the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
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Figure 5. Effective mass of the vector correlator V (t) in the case of the strange (left panel) and
charm (right panel) contributions for the ETMC gauge ensembles specified in the insets.

4 Strange and charm contributions: lowest order

Let’s start by considering the evaluation of ahadµ (<) and ahadµ (>) defined in eqs. (3.2)–(3.3)

for various values of the “cut” T data chosen in the range between tmin and tmax given

in table 2.

The results for the strange contribution to ahadµ (<), ahadµ (>) and their sum ahadµ ob-

tained adopting four choices of T data, namely: T data = (tmin+2), (tmin+tmax)/2, (tmax−2)

and (T/2 − 4), are collected in table 3 for illustrative purposes in the case of few ETMC

gauge ensembles.

The separation between ahadµ (<) and ahadµ (>) depends on the specific value of T data, as

it should be, but their sum ahadµ is almost independent of the choice of the value of T data in

the range between tmin and tmax. This is also reassuring of the fact that the value of ahadµ is

not contaminated significantly by the presence of backward signals in the correlator V (t).

In the case of the charm contribution the value of ahadµ (>) is always several orders of

magnitude smaller than ahadµ (<) and the latter turns out to be the same for all the four

choices of T data.

Note that for T data = T/2−4 the contribution ahadµ (>), which depends on the analytic

representation (3.3), does not exceed ≃ 1.2% of the total value ahadµ even at the smallest

value of the time extension T .

In what follows all the four choices of T data will be employed in the various branches of

our bootstrap analysis. The corresponding systematics is largely sub-dominant with respect

to the other sources of uncertainties and it will not be given separately in the error budget.

The results obtained for the strange and charm contributions to ahadµ are shown by

the empty markers in figure 6. We observe a mild dependence on the light-quark mass,

being driven only by sea quarks, and also small residual FSEs visible only in the case of the
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We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e

+
e

� !
hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum
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FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵

2
QED. We achieve a precision of 2%, for

the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
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Fig. 29. Hadronic higher order VP contributions: a)-c) involving LO vacuum polarization, d) involving HO vacuum polarization
(FSR of hadrons).

perturbative QCD prediction. Less problematic is the space–like (Euclidean) region −q2 → ∞, since it is
away from thresholds and resonances.

The time–like quantity R(s) intrinsically is non-perturbative and exhibits bound states, resonances, in-
stanton effects (η′) and in particular the hadronization of the quarks. In applying pQCD to describe real
physical cross–sections of hadro–production one needs a “rule” which bridges the asymptotic freedom regime
with the confinement regime, since the hadronization of the colored partons produced in the hard kicks into
color singlet hadrons eludes a quantitative understanding. The rule is referred to as quark hadron dual-
ity 15 [231,232], which states that for large s the average non–perturbative hadron cross–section equals the
perturbative quark cross–section:

σ(e+e− → hadrons)(s) ≃
∑

q
σ(e+e− → qq̄, qq̄g, · · ·)(s) , (129)

where the averaging extends from the hadron production threshold up to s–values which must lie sufficiently
far above the quark–pair production threshold (global duality). Qualitatively, such a behavior is visible in
the data Fig. 22 above about 2 GeV between the different flavor thresholds sufficiently above the lower
threshold. A glance at the region from 4 to 5 GeV gives a good flavor of duality at work. Note however that
for precise reliable predictions it has not yet been possible to quantify the accuracy of the duality conjecture.
A quantitative check would require much more precise cross–section measurements than the ones available
today. Ideally, one should attempt to reach the accuracy of pQCD predictions. In addition, in dispersion
integrals the cross–sections are weighted by different s–dependent kernels, while the duality statement is
claimed to hold for weight unity. One procedure definitely is contradicting duality reasonings: to “take pQCD
plus resonances” or to “take pQCD where R(s) is smooth and data in the complementary ranges”. Also
adjusting the normalization of experimental data to conform with pQCD within energy intervals (assuming
local duality) has no solid foundation. Nevertheless, the application of pQCD in the regions advocated
in [229] seems to be on fairly solid ground on a phenomenological level. A more conservative use of pQCD
is possible by going to the Euclidean region and applying the Adler function [233] method as proposed in
Refs. [234,165,235]. As mentioned earlier, the low energy structure of QCD also exhibits non–perturbative
quark condensates. The latter also yield contributions to R(s), which for large energies are calculable by the
operator product expansion of the current correlator Eq. (64) [236]. The corresponding ⟨mq q̄q⟩/s2 power
corrections in fact are small at energies where pQCD applies [234,82] and hence not a problem in our context.

4.2. Higher Order Hadronic Vacuum Polarization Corrections

At order O(α3) there are several classes of hadronic VP contributions with typical diagrams shown in
Fig. 29. They have been estimated first in [187]. Classes (a) to (c) involve leading hadronic VP insertions and
may be treated using DRs together with experimental e+e−–annihilation data. Class (d) involves leading
QED corrections of the charged hadrons and correspond to the inclusion of hadronic final state radiation
(FSR).

The O(α3) hadronic contributions from classes (a), (b) and (c) may be evaluated without particular
problems as described in the following.

15Quark–hadron duality was first observed phenomenologically for the structure function in deep inelastic electron–proton
scattering [230].
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V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵
em

to ahad
µ

, which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
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for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
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FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to ahad
µ

: exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.

For each quark flavor f one has
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where JC

µ

(y) and T
⌫

(y) are given in Eqs. (18) and (20), respectively. In Eq. (41) �mcrit

f

is the

e.m. shift of the critical mass for the quark flavor f , while Z
m

and Z
f

are related to the mass

renormalization constants (RCs) in QCD and QCD+QED. For our maximally twisted-mass setup
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has been determined in Ref. [25], while 1/Z
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= Z
P

, where Z
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is the RC of the pseudoscalar

density evaluated in Ref. [29]. For 1/Z
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we use the perturbative result at leading order in ↵
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B. Local versus conserved vector currents on the lattice

The vector correlator V (t) can be calculated using either the lattice conserved vector current
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(x) or the local vector current J
µ

(x). The latter needs to be renormalized and in our twisted-

mass setup the local vector current for each quark flavor f is given by
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where, being at maximal twist, the renormalization is multiplicative through the renormalization

constant Z
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.

The variation of the lattice action with respect to a vector rotation ↵
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(x) of the quark fields,

i.e.  (x) ! eiqf↵V (x)  (x) and  (x) !  (x) e�iqf↵V (x) (for any quark flavor f), provides the
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According to the vector Ward-Takahashi identity the polarization tensor hJC
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verse because of the contact term arising from the vector rotation of the conserved current JC
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which generates the backward lattice derivative of the tadpole operator and is power divergent as
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where the tadpole operator is explicitly given by
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On the contrary, in the case of one conserved and one local currents there is no contact term

because the vector rotation of the local current (17) is zero. One gets
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which is transverse only with respect to the µ index (i.e., @b
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(x, y) = 0, where @b
µ

is the backward

lattice derivative).

In the case of two local currents the polarization tensor hJ
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(y)i is not transverse. The

mixing pattern of the product of two local currents with all possible operators with equal and lower
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V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵em to ahadµ , which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to ahad
µ

: exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.
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where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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LIB effects à la RM123 [JHEP 1204(2012), Phys.Rev. D87(2013)]

Leading Isospin Breaking (LIB) effects can be calculated directly by expanding
the lattice path-integral in powers of ↵em and (md � mu)

O(~g) =
⌦

R[U,A;~g] O[U,A;~g]
↵A,~g0

⌦

R[U,A;~g]
↵A,~g0 =

⌦

⇣

1 + Ṙ + ...
⌘⇣

O + Ȯ + ...
⌘

↵

⌦

1 + Ṙ + ...
↵

= O(~g0) +�O

sea quark e.m. effects via (noisy) fermion disconnected diagrams

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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* neglect of the electric sea-quark charges: qf
sea = 0
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quark-connected
terms only

G. M. de Divitiis et al.,
2012; 2013

qQED approximation

md −mu[ ] MS,2 GeV( ) = 2.38 0.18( )  MeV
DG et al., 2017
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V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵
em

to ahad
µ

, which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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(a) (b) (c) (d) (e)

FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to ahad
µ

: exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.

For each quark flavor f one has

�V (t) ⌘ �V self (t) + �V exch(t) + �V tad(t) + �V PS(t) + �V S(t) (41)

with

�V self (t) + �V exch(t) =
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where JC

µ

(y) and T
⌫

(y) are given in Eqs. (18) and (20), respectively. In Eq. (41) �mcrit

f

is the

e.m. shift of the critical mass for the quark flavor f , while Z
m

and Z
f

are related to the mass

renormalization constants (RCs) in QCD and QCD+QED. For our maximally twisted-mass setup

�mcrit

f

has been determined in Ref. [25], while 1/Z
m

= Z
P

, where Z
P

is the RC of the pseudoscalar

density evaluated in Ref. [29]. For 1/Z
f

we use the perturbative result at leading order in ↵
em

in

the MS scheme, given by [36]

1
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f

(MS, µ) =
q2
f

16⇡2
[6log(aµ)� 22.596] , (46)
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B. Local versus conserved vector currents on the lattice

The vector correlator V (t) can be calculated using either the lattice conserved vector current

JC

µ

(x) or the local vector current J
µ

(x). The latter needs to be renormalized and in our twisted-

mass setup the local vector current for each quark flavor f is given by

J
µ

(x) = q
f

Z
V

 ̄
f

(x)�
µ

 
f

(x) , (17)

where, being at maximal twist, the renormalization is multiplicative through the renormalization

constant Z
V

.

The variation of the lattice action with respect to a vector rotation ↵
V

(x) of the quark fields,

i.e.  (x) ! eiqf↵V (x)  (x) and  (x) !  (x) e�iqf↵V (x) (for any quark flavor f), provides the

relevant Ward-Takahashi identity for the conserved current JC

µ

expressed in terms of the backward

lattice derivative. In our twisted-mass setup one has

JC
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(x) = q
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1

2
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. (18)

According to the vector Ward-Takahashi identity the polarization tensor hJC

µ

(x)JC

⌫

(y)i is not trans-
verse because of the contact term arising from the vector rotation of the conserved current JC

⌫

(y),
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V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵em to ahadµ , which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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(a) (b) (c) (d) (e)

FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to ahad
µ

: exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.

For each quark flavor f one has
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where JC
µ (y) and T⌫(y) are given in Eqs. (18) and (20), respectively. In Eq. (41) �mcrit

f is the

e.m. shift of the critical mass for the quark flavor f , while Zm and Zf are related to the mass

renormalization constants (RCs) in QCD and QCD+QED. For our maximally twisted-mass setup

�mcrit
f has been determined in Ref. [25], while 1/Zm = ZP , where ZP is the RC of the pseudoscalar

density evaluated in Ref. [29]. For 1/Zf we use the perturbative result at leading order in ↵em in

the MS scheme, given by [36, 37]

1

Zf
(MS, µ) =

↵emq2f
4⇡

[6log(aµ)� 22.596] , (46)

qf
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perturbative estimate at LO
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fact  V f t( )

symmetric QCD. We employ the Iwasaki action [48] for
gluons and the Wilson twisted mass action [49–51] for sea
quarks. Working at maximal twist our setup guarantees an
automatic OðaÞ improvement [50,52].
We consider three values of the inverse bare lattice

coupling β and different lattice volumes, as shown in
Table IV, where the number of configurations analyzed
ðNcfgÞ corresponds to a separation of 20 trajectories. For
earlier investigations of finite volume effects the ETMC had
produced three dedicated ensembles, A40.20, A40.24, and
A40.32, which share the same light-quark mass and lattice
spacing and differ only in the lattice size L. To improve
such an investigation a further gauge ensemble, A40.40,
has been generated at a larger value of the lattice size L.
At each lattice spacing, different values of the sea-

light-quark masses are considered. The valence- and sea-
light-quark masses are always taken to be degenerate.
The values of the lattice spacing in isosymmetric QCD
are a ¼ 0.0885 ð36Þ; 0.0815 ð30Þ, and 0.0619 (18) fm at
β ¼ 1.90, 1.95, and 2.10, respectively.
We made use of the bootstrap samplings elaborated for

the input parameters of the quark mass analysis of
Ref. [38]. There, eight branches of the analysis were
adopted differing in

(i) the continuum extrapolation adopting for the scale
parameter either the Sommer parameter r0 or the
mass of a fictitious pseudoscalar meson made up of
strange(charm)-like quarks;

(ii) the chiral extrapolation performed with fitting func-
tions chosen to be either a polynomial expansion or a
chiral perturbation theory (ChPT) ansatz in the light-
quark mass;

(iii) the choice between methods M1 and M2, which
differ by Oða2Þ effects, used to determine the mass
RC Zm ¼ 1=ZP in the RI0-MOM scheme.

Throughout this work the renormalized average u=d
quark mass mud is given in the MS scheme at a renorm-
alization scale equal to 2 GeV. We recall that, in the
GRS prescription we have chosen, the renormalized
average u=d quark mass in isosymmetric QCD mð0Þ

ud

coincides with the one in QCDþ QED, i.e., mud ¼ mð0Þ
ud ,

in the MSð2 GeVÞ scheme. At the physical pion
mass (Mphys

π ¼ Mπ0 ≃ 135 MeV) the value mphys
ud ¼

3.70 ð17Þ MeV was determined in Ref. [38], using the
PDG value of the pion decay constant [2] for fixing the
lattice scale.
The statistical accuracy of the meson correlator is based

on the use of the so-called “one-end” stochastic method
[53], which includes spatial stochastic sources at a single
time slice chosen randomly. In the case of the light-quark
contribution we have used 160 stochastic sources (diagonal
in the spin variable and dense in the color one) for each
gauge configuration.
Finally, the values evaluated in Ref. [29] for the

coefficients Zfact
m [see Eq. (20)] and Zfact

A [see Eq. (24)]
are collected in Table V.

[1] G.W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D
73, 072003 (2006).

[2] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[3] F. Jegerlehner, EPJ Web Conf. 166, 00022 (2018).
[4] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur.

Phys. J. C 77, 827 (2017).
[5] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D

97, 114025 (2018).
[6] I. Logashenko et al. (Muon g-2 Collaboration), J. Phys.

Chem. Ref. Data 44, 031211 (2015).
[7] M. Otani (E34 Collaboration), J. Phys. Soc. Jpn. Conf. Proc.

8, 025010 (2015).
[8] F. Jegerlehner, Springer Tracts Mod. Phys. 274, 1 (2017).

[9] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur.
Phys. J. C 71, 1515 (2011); 72, 1874(E) (2012).

[10] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, and T.
Teubner, J. Phys. G 38, 085003 (2011).

[11] B. E. Lautrup, A. Peterman, and E. de Rafael, Phys. Rep. 3,
193 (1972).

[12] E. de Rafael, Phys. Lett. B 322, 239 (1994).
[13] T. Blum, Phys. Rev. Lett. 91, 052001 (2003).
[14] B. Chakraborty, C. T. H. Davies, G. C. Donald, R. J.

Dowdall, J. Koponen, G. P. Lepage, and T. Teubner
(HPQCD Collaboration), Phys. Rev. D 89, 114501 (2014).

[15] B. Chakraborty, C. T. H. Davies, J. Koponen, G. P. Lepage,
M. J. Peardon, and S. M. Ryan, Phys. Rev. D 93, 074509
(2016).

TABLE V. Values adopted for the coefficients Zfact
m [see

Eq. (20)] and Zfact
A [see Eq. (24)] evaluated in Ref. [29] for

the M1 and M2 renormalization methods (see Ref. [38]) at the
three values of β. In Ref. [21] a common value Zfact

A ¼ 0.9ð1Þ,
estimated through the axial Ward-Takahashi identity derived in
the presence of QED effects, was adopted at all values of β.

β Zfact
m ðM1Þ Zfact

A ðM1Þ Zfact
m ðM2Þ Zfact

A ðM2Þ
1.90 1.629 (41) 0.859 (15) 1.637 (14) 0.990 (9)
1.95 1.514 (33) 0.873 (13) 1.585 (12) 0.980 (8)
2.10 1.459 (17) 0.909 (6) 1.462 (6) 0.958 (3)

D. GIUSTI et al. PHYS. REV. D 99, 114502 (2019)

114502-12

O α emα s
n( )RI’-MOM @ see talk by M. Di Carlo, Tue 17.30

s c



14

in the ratio various systematics cancel out

quark-connected
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for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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sea quark e.m. effects via (noisy) fermion disconnected diagrams

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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* neglect of the electric sea-quark charges: qf
sea = 0
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propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
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In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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Hadronst
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(space-like) scattering

Arbuzov et al. EPJC 34 (2004) 267
Abbiendi et al. (OPAL) EPJC 45 (2006) 1
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B. E. Lautrup et al., 1972

General considerations

• To get �↵had(t), the goal is to measure the (absolute) running of ↵QED(t)

! The idea: Bhabha events at e+e� (low-energy) colliders [original proposal]
CC, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

! or µe scattering events in a fixed target experiment [new proposal]
Abbiendi et al. EPJC 77 (2017) no.3, 139
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Fit to pseudo-data (Padé)

pQCD + time-like data

pseudo-data

Strategy:
• measure �↵had(t) within the exp. range
• get large |t| values from elsewhere

(time-like data, lattice)
see next talk by Marina

• fit �↵had(t)

• integrate to get aHLO
µ

Roughly, to be competitive with the current
evaluations, �↵had(t) needs to be know at the
sub-% level
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Conclusions

We have performed a first-principles lattice QCD+QED calculation of       .
Our result agrees with recent determinations based on dispersive analyses.
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evaluation of the quark-disconnected terms and relaxation of the qQED 
approximation

where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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LIB effects à la RM123 [JHEP 1204(2012), Phys.Rev. D87(2013)]

Leading Isospin Breaking (LIB) effects can be calculated directly by expanding
the lattice path-integral in powers of ↵em and (md � mu)

O(~g) =
⌦

R[U,A;~g] O[U,A;~g]
↵A,~g0

⌦

R[U,A;~g]
↵A,~g0 =

⌦

⇣

1 + Ṙ + ...
⌘⇣

O + Ȯ + ...
⌘

↵

⌦

1 + Ṙ + ...
↵

= O(~g0) +�O

sea quark e.m. effects via (noisy) fermion disconnected diagrams

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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* neglect of the electric sea-quark charges: qf
sea = 0
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development of an analytic representation of the correlator for s- and c-
quark contributions

Π1
tot = 0.1000 30( )  GeV−2

Π1
tot = 0.1000 23( )  GeV−2

BMW17

FHM19

ae
HVP = 184 5( ) ⋅10−14 aµ

HVP = 682 19( ) ⋅10−10 aτ
HVP = 330 5( ) ⋅10−8

aµ
HVP⎡⎣ ⎤⎦> = 92 2( ) ⋅10−10 Π1

tot = 0.100 3( )  GeV−2
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