Lepton anomalous magnetic moments in Lattice QCD+QED

Davide Giusti

XXXVII International Symposium on Lattice Field Theory Wuhan

 $16^{th} - 22^{nd}$ June

Results for the light, strange and charm quark contributions to a_l^{HVP}
 MUonE experiment: lattice contribution to a_u^{HVP}

OUTLINE

In collaboration with:

V. Lubicz, G. Martinelli, F. Sanfilippo and S. Simula

Hadronic Vacuum Polarisation

Given the present exper. and theor. (LQCD) accuracy, an important source of uncertainty are long distance electromagnetic and SU(2) breaking corrections

Lepton anomalous magnetic moments

HVP from LQCD

q

$$\Pi_{\mu\nu}(Q) = \int d^{4}x \ e^{iQ\cdot x} \left\langle J_{\mu}(x)J_{\nu}(0) \right\rangle = \left[\delta_{\mu\nu}Q^{2} - Q_{\mu}Q_{\nu} \right] \Pi(Q^{2})$$

$$a_{\ell}^{\text{HVP}} = 4\alpha_{em}^{2} \int_{0}^{\infty} dQ^{2} \frac{1}{m_{\ell}^{2}} f\left(\frac{Q^{2}}{m_{\ell}^{2}}\right) \left[\Pi(Q^{2}) - \Pi(0) \right]$$
B. E. Lautrup et al., 1972; T. Blum, 2002
Time-Momentum Representation
$$a_{\ell}^{\text{HVP}} = 4\alpha_{em}^{2} \int_{0}^{\infty} dt \ \tilde{f}(t) V(t)$$
D. Bernecker and H. B. Meyer, 2011
$$V(t) = \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_{i}(\vec{x},t)J_{i}(0) \right\rangle$$

$$t \leq T_{data} \leq T/2 \text{ (avoid bw signals)}$$

$$t \geq T_{data} \geq t_{min} (\text{ground-state dom.})$$

$$quark-connected terms only$$

Correlator representation

$$V^{ud}(t) = V_{dual}(t) + V_{\pi\pi}(t)$$

low and intermediate time distances

$$V_{dual}(t) \equiv \frac{1}{24\pi^2} \int_{s_{dual}}^{\infty} ds \sqrt{s} \ e^{-\sqrt{st}} R^{pQCD}(s)$$

$$s_{dual} = \left(\frac{M_{\rho}}{F_{dual}}\right)^2 \qquad R_{dual} = 1 + O\left(\frac{m_{ud}^4}{s_{dual}^2}\right) + O(\alpha_s) + O(\alpha)$$

$$V_{dual}(t) = \frac{5}{18\pi^2} \frac{R_{dual}}{t^3} e^{-(M_{\rho} + E_{dual})t} \left[1 + \left(M_{\rho} + E_{dual} \right) t + \frac{1}{2} \left(M_{\rho} + E_{dual} \right)^2 t^2 \right]$$

long time distances

$$V_{\pi\pi}(t) = \sum_{n} v_{n} |A_{n}|^{2} e^{-\omega_{n}t}$$

M. Lüscher

$$\omega_n = 2\sqrt{M_\pi^2 + k_n^2} \quad [99]$$

$$\lambda \text{ Lüscher}$$

L. Lellouch and M. Lüscher, 2001 condition

$$|A_n|^2 \rightarrow |F_{\pi}(\omega_n)|^2$$

Gounaris-Sakurai parameterization

 $M_{\rho} g_{\rho\pi\pi}$ GS, 1968 50 O KLOE [62] 40 -GS M = 0.135 GeV 30 $|\mathsf{F}_{\pi}(\omega)|^2$ M = 0.775 GeV g_{ρππ} = 5.50 20 10 0.5 0.6 0.7 0.8 0.9 1.0 1.1 9

ω (GeV)

Isospin-breaking corrections to a_{ℓ}^{HVP}

$$\delta V_{f}^{Z_{A}}(t) = \frac{\alpha_{em}}{4\pi} \delta Z_{A}^{QED} Z_{A}^{fact} V^{f}(t)$$
RI'-MOM @ $O(\alpha_{em}\alpha_{x}^{n})$
RI'-MOM @ $O(\alpha_{em}$

MUonE

MUonE

