Determining the glue component of the nucleon

R. Horsley, T. Howson, W. Kamleh, Y. Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, H. Stüben, R. Young and J. M. Zanotti

– QCDSF-UKQCD–CSSM Collaboration –

Edinburgh - Adelaide - RIKEN (Kobe) - Leipzig - Liverpool - DESY - Hamburg

Lattice 2019, Wuhan, China

[Thursday 20/6/19 16:30 (Hilton Hotel Wuhan Riverside)]



### Nucleon Momentum

• How is the nucleon's momentum distributed among its constituents ?

$$\sum_{q} \langle x 
angle_q + \langle x 
angle_g = 1$$

where

 $\langle x \rangle_f =$  fraction of nucleon momentum carried by parton  $f = q, \overline{q}, g$ 

- Expt:  $\langle x \rangle_g \sim \frac{1}{2}$  evidence for existence of the gluon
- Previous work includes:

Göckeler et al, arXiv:hep-lat/9608017; Meyer et al, arXiv:0707.3225; QCDSF-UKQCD, arXiv:1205.6410;

 $\chi {\rm QCD},$  arXiv:1312.4816; Shanahan et al, arXiv:1810.04626

• This talk will describe a determination of

# $\langle x \rangle_g$

(mainly) using Feynman–Hellmann theorem Aim: To compare RI - MOM renormalisation procedure with previous QCDSF-UKQCD result

Results+Conclusions

#### Operators, just consider n = 2, but for both quark/gluon

• 
$$\langle x 
angle \equiv v_2$$
 Euclidean

$$\langle N(\vec{p})|\widehat{\mathcal{O}}_{f}^{(b)}|N(\vec{p})\rangle = 2(m_{N}^{2} + \frac{4}{3}\vec{p}^{2})\langle x\rangle_{f}$$

where

$$\mathcal{O}^{(b)} = \mathcal{O}_{44} - \frac{1}{3}\mathcal{O}_{ii}$$

with

$$\begin{array}{ll} O_{\mu\nu}^{(g)} &= -tr_c F_{\mu\alpha} F_{\nu\alpha} & O_g^{(b)} = \frac{2}{3} tr_c (-\vec{E}^2 + \vec{B}^2) \\ O_{\mu\nu}^{(q)} &= \bar{q} \gamma_\mu \stackrel{\leftrightarrow}{D}_\nu q & O_q^{(b)} = \bar{q} \gamma_4 \stackrel{\leftrightarrow}{D}_4 q - \frac{1}{3} \bar{q} \gamma_i \stackrel{\leftrightarrow}{D}_i q \end{array}$$

with  $\mathcal{O}(t) = \int d^3x \, O(t, \vec{x})$  normalisation  $\langle N(\vec{p}) | N(\vec{p}') \rangle = 2E_N \delta(\vec{p} - \vec{p}')$ 

- Representation allows  $\vec{p} = \vec{0}$  (other representations,  $O^{(a)} \sim \vec{E} \times \vec{B}$  with  $\vec{p} \neq \vec{0}$  are possible)
- Related to decomposition of nucleon mass via energy-momentum tensor [Ji: hep-ph/9410274]

Lattice  $\langle x \rangle_g$ 

Renormalisation

Results+Conclusions

# Lattice determination - Feynman-Hellmann

- Rather than forming ratios of 3-point to 2-point correlation functions (very noisy):
  - Add operator of interest to action,

 $S \rightarrow S(\lambda) = S + \lambda S_O$ 

- Perform subsidiary runs at different  $\lambda$
- Determine  $E_N(\lambda)$  and use Feynman–Hellmann theorem to find matrix element of interest

$$\frac{\partial E_N(\lambda)}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{2E_N(\lambda)} \left\langle N \left| : \frac{\widehat{\partial S(\lambda)}}{\partial \lambda} : \left| N \right\rangle_{\lambda} \right|_{\lambda=0} \right.$$

(gradient at  $\lambda = 0$ )

includes both quark line connected and disconnected terms

Renormalisation

Results+Conclusions

### The modified action

• Wilson gluonic action

$$S = \frac{1}{3}\beta \sum_{x\,\mu<\nu} \operatorname{Retr}_{c} \left[ 1 - U_{\mu\nu}^{\Box}(x) \right]$$

As

Retr<sub>c</sub> 
$$\left[1 - U^{\Box}_{\mu\nu}(x)\right] = \frac{1}{4}a^4g^2F^a_{\mu\nu}(x)^2 + \dots$$

• This motivates the simplest definition of electric and magnetic field on each time slice as

$$\begin{array}{rcl} \frac{1}{2}\mathcal{E}^{a2}(\tau) &=& \frac{1}{3}\beta\sum_{\vec{x}\,i}\,\operatorname{Retr}_{c}\left[1-U_{i4}^{\Box}(\vec{x},\tau)\right] \\ \frac{1}{2}\mathcal{B}^{a2}(\tau) &=& \frac{1}{3}\beta\sum_{\vec{x}\,i< j}\,\operatorname{Retr}_{c}\left[1-U_{ij}^{\Box}(\vec{x},\tau)\right] \end{array}$$

For the action we thus take

$$S(\lambda) = \sum_{\tau} \frac{1}{2} [\mathcal{E}^{a2}(\tau) + \mathcal{B}^{a2}(\tau)] - \lambda \sum_{\tau} \underbrace{\frac{1}{2} [-\mathcal{E}^{a2}(\tau) + \mathcal{B}^{a2}(\tau)]}_{\frac{3}{2}O^{(b)}}$$

### Lattice results

$$\langle x \rangle_{g}^{\scriptscriptstyle LAT} = - \frac{2E_N}{3(m_N^2 + \frac{4}{3}\vec{p}^{\,2)}} \left. \frac{\partial E_N(\lambda)}{\partial \lambda} \right|_{\lambda=0}$$



• Quenched,  $\beta \equiv 6/g^2 = 6.0$ ,  $24^3 \times 48$  lattice,  $O^{(b)}$ ,  $\vec{p} = \vec{0}$ , O(500) configs

## Quenched Renormalisation

$$\begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_{v_u} \\ \langle x \rangle_{v_d} \end{pmatrix}^{\mathsf{R}} = \begin{pmatrix} Z_{gg} & Z_{gq} & Z_{gq} \\ 0 & 0 & Z_{qq} \\ 0 & 0 & Z_{qq} \end{pmatrix} \begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_{v_u} \\ \langle x \rangle_{v_d} \end{pmatrix}^{\mathsf{LA}}$$

- Bottom rows of zeros: if don't put in a valence (x)v 'by hand' then it remains zero
- Last column: valence quark surrounded by cloud of g,  $u - \overline{u}$ ,... quark bubbles
- · Valence means only for 'quark line connected'

٠

$$\left(\langle x \rangle_g + \langle x \rangle_{v_u} + \langle x \rangle_{v_d}\right)^{\scriptscriptstyle R} = Z_g \langle x \rangle_g^{\scriptscriptstyle LAT} + Z_q \left(\langle x \rangle_{v_u} + \langle x \rangle_{v_d}\right)^{\scriptscriptstyle LAT} = 1$$

• so  $Z_g$ ,  $Z_q$  just depend on coupling, g, with [hence in quenched limit so does  $Z_{gg}$ ]

$$Z_g = Z_{gg} , \qquad Z_q = Z_{gq}^{\overline{\scriptscriptstyle{\mathrm{MS}}}} + Z_{qq}^{\overline{\scriptscriptstyle{\mathrm{MS}}}}$$

Quenched Renormalisation I – estimating  $Z_g$  from RI - MOM and FH

$$A_{\mu}(x + \hat{\mu}/2) = \frac{1}{2ig} (U_{\mu}(x) - U_{\mu}(x)^{\dagger}) - \text{tr} \quad A^{a}_{\mu}(p) = \sum_{x} e^{ip \cdot (x + \hat{\mu}/2)} A^{a}_{\mu}(x + \hat{\mu}/2) A^{a}_{\mu}(x + \hat{\mu}/2)$$

Free/Born/Tree-level case: numerically: Landau gauge  $\xi = 0$ , D non-invertible

$$D_{\mu\nu}^{\text{Born}\,ab}(p) = \delta^{ab} \left( \delta_{\mu\nu} - (1-\xi) \frac{p_{\mu}p_{\nu}}{p^2} \right) \frac{1}{p^2}$$

$$\Gamma_{\mu\nu}^{(b)\,\text{Born}\,ab}(p) = \frac{2}{3} \begin{pmatrix} (\vec{p}^2 - p_4^2) \delta_{ij} - p_i p_j \\ - - - p_4 p_j \end{pmatrix} \delta^{ab}$$

Interacting case: expect similar structures

$$D^{ab}_{\mu\nu}(p) = \delta^{ab} \left( \delta_{\mu\nu} - (1-\xi) \frac{p_{\mu}p_{\nu}}{p^2} \right) D_0(p^2)$$
  

$$\Gamma^{(b) ab}_{\mu\nu}(p) = \Gamma^{(b) Born ab}_{\mu\nu}(p) \Lambda(p^2)$$

In particular  $\langle A(p)O^{(b)}A(-p)\rangle = \Gamma^{(b)}(p)D_0(p)^2$ 

### Renormalised fields

$$A^{\rm R} = Z_3^{1/2} A \qquad O^{(b)_{\rm R}} = Z_g O^{(b)} \quad \Rightarrow \quad \Gamma^{(b)_{\rm R}} = Z_g Z_3^{-1} \Gamma^{(b)}$$

Renormalisation condition

 $[\Gamma^{(b) \operatorname{Born}}$  non-invertible]

$$\mathrm{tr}_{\mathrm{CL}} \Gamma^{(b)\,\mathrm{R}}(p)\Big|_{p^2=\mu^2} = \,\mathrm{tr}_{\mathrm{CL}} \Gamma^{(b)\,\mathrm{Born}}(p)\Big|_{p^2=\mu^2} \quad \Rightarrow \quad Z_g = \frac{Z_3}{\Lambda}$$

Defining

$$\langle A^{a}_{\mu}(p)O^{(b)}A^{a}_{\mu}(-p)
angle = rac{2}{3}rac{\partial}{\partial\lambda}\underbrace{\langle A^{a}_{\mu}(p)A^{a}_{\mu}(-p)
angle_{\lambda}}_{ ext{define: }3 imes3 imes D_{\lambda}(p)}|_{\lambda=0}$$

gives

$$Z_g = \left. \frac{\vec{p}^2 - 3p_4^2}{3(\vec{p}^2 + p_4^2)} \left. \frac{p^2 D_0(p)}{\frac{\partial}{\partial \lambda} p^2 D_\lambda(p)} \right|_{\lambda=0} \right|_{p^2=\mu^2}$$

 $Z_3$  found by comparing gluon propagator to the Born value:  $Z_3 = 1/(p^2 D_0)|_{p^2=\mu^2}$ 

Renormalisation

# PRELIMINARY RESULTS

 $p^2 D_{\lambda}$ :



- Quenched,  $\beta=$  6.0, 24<sup>4</sup> lattice,  $\lambda=$  0,  $\pm 0.0333$
- $p_{\mu} 
  ightarrow \hat{p}_{\mu} = 2\sin(p_{\mu}/2)$ , cylinder cut: (n, n, n, 0)
- 1000 configs/ $\lambda$  value



Linear fit

 $[O(a\hat{p})^2$  discretisation errors assumed]

 $Z_g = 0.799(91)$ 

• Benchmark/comparison: Engels et al [hep-lat/9905002]  $Z_{g}|_{g^{2}=1} = \frac{1 - 1.0225g^{2} + 0.1305g^{4}}{1 - 0.8557g^{2}}\Big|_{g^{2}=1} = 0.748(20)$   $Z_{g} = 1 - g^{2}/2(c_{\sigma} - c_{\tau}) \text{ and NP determination of anisotropic coefficients } c_{\sigma}, c_{\tau}, \text{ see also Meyer: arXiv:0704.1801}$ 

Results+Conclusions

# Quenched Renormalisation II – estimating $Z_q$ by enforcing sum-rule

$$Z_{g}\langle x\rangle_{g}^{\scriptscriptstyle LAT}+Z_{q}\left(\langle x\rangle_{v_{u}}+\langle x\rangle_{v_{d}}\right)^{\scriptscriptstyle LAT}=1$$



# Quenched Renormalisation II

• 
$$Z_g = 0.799(91), Z_q = 0.99(22)$$

• *Z*<sub>qq</sub>:

[QCDSF: hep-ph/0410187]

$$\langle x 
angle_v^{\overline{\scriptscriptstyle MS}}(\mu=2\,{
m GeV}) = Z_{qq} \langle x 
angle^{{\scriptscriptstyle L} {\scriptscriptstyle AT}}$$

gives

$$Z_{qq}^{\overline{MS}}(\mu = 2\,\text{GeV}) = Z_{\nu_{2b}}^{RG} \times [\Delta Z_{\nu_{2}}^{\overline{MS}}(\mu = 2\,\text{GeV})]^{-1} = 1.45 \times 0.732(9) = 1.06(1)$$

• finally

$$\langle x \rangle_{g}^{\overline{\scriptscriptstyle MS}}(\mu = 2\,{
m GeV}) = Z_g \langle x \rangle_{g}^{\scriptscriptstyle LAT} + Z_{gq}^{\overline{\scriptscriptstyle MS}}\left(\langle x \rangle_{v_u} + \langle x \rangle_{v_d}
ight) \,, \quad Z_{gq}^{\overline{\scriptscriptstyle MS}} = Z_q - Z_{qq}^{\overline{\scriptscriptstyle MS}}$$

where we now know everything





 $\langle x \rangle_{g}^{\overline{\scriptscriptstyle MS}}(\mu = 2 \, {\rm GeV}) = 0.46(16)$ 

- Consistent with previous determination
- Need to reduce errors work in progress

# Next steps

•  $Z_g$ Modify renormalisation condition

$$\mathrm{tr}_{\scriptscriptstyle\mathrm{CL}} \Gamma^{(b)\,\scriptscriptstyle\mathrm{R}}(p) \Gamma^{(b)\,\scriptscriptstyle\mathrm{Born}}(p) \Big|_{p^2 = \mu^2} = \, \mathrm{tr}_{\scriptscriptstyle\mathrm{CL}} \Gamma^{(b)\,\scriptscriptstyle\mathrm{Born}}(p) \Gamma^{(b)\,\scriptscriptstyle\mathrm{Born}}(p) \Big|_{p^2 = \mu^2}$$

Better geometry possible:

numerator sum of squares, so never vanishes

# • Z<sub>gq</sub>

Quark propagator modified, so expect

$$Z_{gq} \propto {
m tr}_{\scriptscriptstyle 
m CL} {\Gamma}^{(b)\,{
m Born}} (S_{\lambda}^{-1}-S_0^{-1})$$

Results+Conclusions

## Conclusions

- $\langle x \rangle_g$  is a notoriously difficult quantity to compute
  - short distance quantity
  - large fluctuations
  - a 'disconnected quantity'
- Method I for matrix element and renormalisation Z:
  - straightforward computation of 3-point functions
  - one run, requires 500,000 configs due to fluctuations in signal
  - extremely expensive
- Method II for matrix element and renormalisation Z:
  - use Feynman–Hellmann theorem
  - several runs required, but each run moderate
  - expensive

[Ferrenberg-Swendsen?]

• Result – reasonable agreement with previous result

[Need to reduce errors - work in progress]

#### Renormalisation – general

$$\begin{pmatrix} \langle x \rangle_{g} \\ \langle x \rangle_{u} \\ \langle x \rangle_{u} \\ \langle x \rangle_{d} \\ \langle x \rangle_{s} \\ \langle x \rangle_{v} \end{pmatrix}^{R} = \begin{pmatrix} Z_{gg} & Z_{gq} & Z_{gq} & Z_{gq} & Z_{gq} \\ Z_{qg} & Z_{a} & Z_{b} & Z_{b} \\ Z_{qg} & Z_{b} & Z_{a} & Z_{b} & Z_{b} \\ Z_{qg} & Z_{b} & Z_{b} & Z_{a} & Z_{b} \\ 0 & 0 & 0 & 0 & Z_{a} - Z_{b} \end{pmatrix} \begin{pmatrix} \langle x \rangle_{g} \\ \langle x \rangle_{u} \\ \langle x \rangle_{d} \\ \langle x \rangle_{s} \\ \langle x \rangle_{v} \end{pmatrix}^{LAT}$$

- Case:  $n_f = 3$  and  $n_{f_V} = 1$  partially quenched or valence quarks
- All Zs depend on scheme, renormalisation scale µ
- Non-singlet (eg  $\langle x \rangle_u \langle x \rangle_d$ ) and singlet (ie  $\langle x \rangle_u + \langle x \rangle_d + \langle x \rangle_s$ ) so

 $Z_{qq}^{\rm \scriptscriptstyle NS} = Z_a - Z_b \,, \qquad Z_{qq}^{\rm \scriptscriptstyle S} = Z_{qq}^{\rm \scriptscriptstyle NS} + n_f Z_b$ 

 Bottom row of zeros: if don't put in a valence (x), 'by hand' then it remains zero

- Last column: valence quark surrounded by cloud of g,  $u - \overline{u}$ , ... quark bubbles
- Valence means only for 'quark line connected', so renormalise as  $\langle x \rangle_v^{\rm R} = Z_{qq}^{\rm NS} \langle x \rangle_v^{\rm LAT}$
- Can also split:  $\langle x \rangle_q = \langle x \rangle_q^{\text{con}} + \langle x \rangle_q^{\text{dis}}$  with  $\langle x \rangle_q^{\text{con R}} = Z_{qq}^{\text{NS}} \langle x \rangle_q^{\text{con LAT}}$ ,  $\langle x \rangle_q^{\text{dis R}} = \dots$

Lattice  $\langle x \rangle_g$ 

Renormalisation

Results+Conclusions

#### Renormalisation – general II

$$\left( \langle x \rangle_g + \sum_f \langle x \rangle_f + \sum_{v_f} \langle x \rangle_{v_f} \right)^R = Z_g \langle x \rangle_g^{LAT} + Z_q \left( \sum_f \langle x \rangle_f + \sum_{v_f} \langle x \rangle_{v_f} \right)^{LAT}$$
$$= 1$$

#### with

$$Z_{g} = Z_{gg}^{\overline{\text{MS}}} + n_{f} Z_{qg}^{\overline{\text{MS}}}$$
$$Z_{q} = Z_{gq}^{\overline{\text{MS}}} + Z_{qq}^{NS \overline{\text{MS}}}$$

 Z<sub>g</sub>, Z<sub>q</sub> just depend on coupling, g (but individual terms depend on chosen scheme, eg MS)