Introduction	Analysis	Systematic Error	Statistic error	Summary

High precision determination of w_0

Jana N. Guenther

for the BMW collaboration

June 20th 2019

Introduction			
Scale settir	าg		

High precision scale setting is important for any high precision calculation on the lattice, especially for dimensionfull quantities.

Scale setting uncertainty appears in several ways:

- Definition of the physical point
- Translation of the result in MeV.

```
<u>ه</u> ...
```

```
[plot: L. Varnhorst]
```

Introduction	Analysis	Systematic Error	Statistic error	Summary
w ₀				

Very promising for high precision scale setting: w_0 .

[plot: L. Varnhorst]

- Apply Wilson flow to "smooth out" the gauge fields and bring them closer to the classical solution. [Luscher:2010iy]
- Monitor the action density.
- Define w_0 to be the value of \sqrt{t} where $t \frac{d}{dt} \langle t^2 E(t) \rangle = 0.3$. [Borsanyi:2012zs]
- Closely related to t_0 . [Luscher:2010iy]

Introduction	Analysis	Systematic Error	Statistic error	Summary

Recent results

 w_0 can not be determined expertimentally. \Rightarrow It has to be determined once on the lattice.

In this talk I will present an ongoing effort to determine w_0 with high precision in a blind analysis.

[ALPHA] M. Bruno et al. [ALPHA Collaboration]. PoS LATTICE 2013 (2014) 321 [arXiv:1311.5585 [hep-lat]]. [QCDSF-UKQCD] R. Horsley et al. [QCDSF-UKQCD] Collaboration], PoS LATTICE 2013 (2014) 249 [arXiv:1311.5010 [hep-lat]]. [BMW] S. Borsanvi et al., "High-precision scale setting in lattice QCD." JHEP 1209 (2012) 010 [arXiv:1203.4469 [hep-lat]]. [HotQCD] A. Bazavov et al. [HotQCD Collaboration]. Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387 [hep-lat]]. [ETMC] A. Deuzeman and U. Wenger, PoS LATTICE 2012 (2012) 162. [HPQCD] R. J. Dowdall, C. T. H. Davies, G. P. Lepage and C. McNeile, Phys. Rev. D 88 (2013) 074504 [arXiv:1303.1670 [hep-lat]]. [MILC] A. Bazavov et al. [MILC Collaboration], Phys. Rev. D

93 (2016) no.9, 094510 [arXiv:1503.02769 [hep-lat]].

(Plot based on [MILC])

Determination from $w_0 f_{\pi}$

- presented at LATTICE2017 by L. Varnhorst
- determined on 2+1+1 ensembles
- accuracy pprox 6%
- 2 challenges:
 - Input error of *f*_π
 What about QED?
- determination from $w_0 M_{\Omega}$

Introduction	Analysis		
0-mugshot			

- hadron type: baryon
- valence quarks: sss
- charge: -

-

• mass: (1672.45 \pm 0.29) MeV, $\Delta_{m_\Omega} = 0.17\%$ ($\Delta_{f_\pi} = 1.5\%$) [PDG 2018]

Introduction	Analysis	Systematic Error	Statistic error	Summary
lattice en	semhles			

The ensembles are generated with a staggered fermion action on stout-smeared gauge configurations. The gauge action is tree-level Symmanzik improved.

	Analysis		
QED-Fit			

$$w_0 M_\Omega = A + B M_{\pi^0}^2 w_0^2 + C M_{K_\chi}^2 w_0^2 + E e_v^2 + F e_v e_s + G e_s^2$$

$$M_{K_{\chi}}^{2} = M_{K^{+}}^{2} + M_{K^{0}}^{2} - M_{\pi_{+}}^{2}$$

$$A = A_{0} + A_{1}a^{2}$$

$$B = B_{0} + B_{1}a^{2}$$

$$C = C_{0} + C_{1}a^{2}$$

$$E = E_{0} + E_{1}a^{2}$$

$$F = F_{0}$$

$$G = G_{0}$$

The scale is set by w_0 . To determine the final result, the equation is solved for w_0 in the continuum, at the physical point. In this way the determination is self consistent.

Mass determination

 M_{π} , M_{K} and M_{Ω} are extracted by fitting appropriate correlators in two different fit ranges each.

 M_{Ω} is also determined by solving the generalized eigen value problem (GEVP) \longrightarrow talk by L. Varnhorst, 20.06.2019, 17:10

	Analysis		
OFD_effect	c		

$$w_0 M_\Omega = A + B M_{\pi^0}^2 w_0^2 + C M_{K_\chi}^2 w_0^2 + E e_v^2 + F e_v e_s + G e_s^2$$

$$\begin{split} \left[w_{0}M_{\Omega}\right]_{\mathrm{iso}} &= A + B\left[M_{\pi^{0}}^{2}w_{0}^{2}\right]_{\mathrm{iso}} + C\left[M_{K_{\chi}}^{2}w_{0}^{2}\right]_{\mathrm{iso}} \\ \frac{\partial^{2}}{\partial e_{\nu}^{2}}\left[w_{0}M_{\Omega}\right] &= B\frac{\partial^{2}}{\partial e_{\nu}^{2}}\left[M_{\pi^{0}}^{2}w_{0}^{2}\right] + C\frac{\partial^{2}}{\partial e_{\nu}^{2}}\left[M_{K_{\chi}}^{2}w_{0}^{2}\right] + E \\ \frac{\partial}{\partial e_{s}e_{\nu}}\left[w_{0}M_{\Omega}\right]_{q11} &= B\frac{\partial}{\partial e_{s}e_{\nu}}\left[M_{\pi^{0}}^{2}w_{0}^{2}\right] + C\frac{\partial}{\partial e_{s}e_{\nu}}\left[M_{K_{\chi}}^{2}w_{0}^{2}\right] + F \\ \frac{\partial^{2}}{\partial e_{s}^{2}}\left[w_{0}M_{\Omega}\right] &= B\frac{\partial^{2}}{\partial e_{s}^{2}}\left[M_{\pi^{0}}^{2}w_{0}^{2}\right] + C\frac{\partial^{2}}{\partial e_{s}^{2}}\left[M_{K_{\chi}}^{2}w_{0}^{2}\right] + G \end{split}$$

Perform a combined, fully correlated fit to all components, which takes *x*- and *y*-Errors into account For more details on QED effects \longrightarrow talk by B. Toth, 18.06.2019, 17:10

	Systematic Error	

Analysis

Systematic Error

Statistic erro

Summary

Systematic error estimation

$$w_0 M_{\Omega} = A + BM_{\pi^0}^2 w_0^2 + CM_{K_{\chi}}^2 w_0^2 + Ee_v^2 + Fe_v e_s + Ge_s^2$$
$$M_{K_{\chi}}^2 = m_{K^+}^2 + M_{K^0}^2 - M_{\pi_+}^2$$
$$A = A_0 + A_1 a^2$$
$$B = B_0 + B_1 a^2$$
$$C = C_0 + C_1 a^2$$
$$E = E_0 + E_1 a^2$$
$$F = F_0$$
$$G = G_0$$

 $\beta = 3.7500, 3.7753, 3.8400, 3.9200, 4.0126$

Everything colored in red is varied. If there are only three β s, E_1 is excluded. Also the different results of the omega mass fits are varied. There is a total of 1920 fits.

Introduction Analysis Systematic Error Statistic error Summary Final systematic error budged

 $w_0 M_{\Omega} = A + B M_{\pi^0}^2 w_0^2 + C M_{K_{\chi}}^2 w_0^2 + E e_v^2 + F e_v e_s + G e_s^2$

Analysis	Statistic error	

3 Systematic Error

4 Statistic error

The statistic error is estimated by the Jackknife method.

For one quantity:

$$\vec{\delta} = \begin{pmatrix} f(x_i) - y_i \\ \delta_{x,i} \end{pmatrix} \quad \chi^2 = \sum_i \vec{\delta}^T C^{-1} \vec{\delta}$$

where C is the covariance matrix.

[plot: L.Varnhorst]

When generalized to several quantities, the number of fit parameters and the size of C increases. This can be numerically difficult.

1

Computationally easier, but leading to the same minimum:

Minimizing:

$$\chi^{2} = \sum_{i} \frac{y_{i}^{(k)} - f^{(k)}(x_{i})}{\sigma(y_{i}^{(k)} - f^{(k)}(x_{i}))} C_{kl}^{-1} \frac{y_{i}^{(l)} - f^{(l)}(x_{i})}{\sigma(y_{i}^{(l)} - f^{(l)}(x_{i}))}$$
$$C_{lm} = \sum_{k} \left(y_{l}^{(k)} - f^{(k)}(x_{l}) - (y_{l} - f(x_{l})) \right) \left(y_{m}^{(k)} - f^{(k)}(x_{m}) - (y_{m} - f(x_{m})) \right)$$

 σ : Jackknife error, f: fit function for $w_0 M_{\Omega}$

		Statistic error	
Full error			

$w_0 M_{\Omega}$:

		Statistic error	
Full error			

 $w_0 M_{\Omega}$:

			Summary
Analysis	overview		

Determine M_Ω, M_π, and M_K either by fitting the correlator or solving GEVP.

			Summary
Analysis d	overview		

- Determine M_Ω, M_π, and M_K either by fitting the correlator or solving GEVP.
- Fit $w_0 M_{\Omega}$ with a correlated fit that includes the *x*-errors.

$$\begin{split} w_0 M_\Omega &= A + B M_{\pi^0}^2 w_0^2 + C M_{K_\chi}^2 w_0^2 \\ &+ E e_v^2 + F e_v e_s + G e_s^2 \end{split}$$

			Summary
Analysis o	verview		

- Determine M_Ω, M_π, and M_K either by fitting the correlator or solving GEVP.
- Fit $w_0 M_{\Omega}$ with a correlated fit that includes the *x*-errors.
- Solve the fit function for w₀ so the determination is self consistent.

$$\begin{split} w_0 M_\Omega &= A + B M_{\pi^0}^2 w_0^2 + C M_{K_\chi}^2 w_0^2 \\ &+ E e_v^2 + F e_v e_s + G e_s^2 \end{split}$$

			Summary
Analvsis o	verview		

- Determine M_Ω, M_π, and M_K either by fitting the correlator or solving GEVP.
- Fit w₀M_Ω with a correlated fit that includes the x-errors.
- Solve the fit function for w₀ so the determination is self consistent.
- Estimate the systematic error via the Histogram method by various analyses.

	Analysis		Summary
Analysis o	verview		

- Determine M_Ω, M_π, and M_K either by fitting the correlator or solving GEVP.
- Fit w₀M_Ω with a correlated fit that includes the x-errors.
- Solve the fit function for w₀ so the determination is self consistent.
- Estimate the systematic error via the Histogram method by various analyses.
- Determine the statistic error via the Jackknife method.

		Summary
Summary		

- $w_0 M_\Omega$ is a suitable quantity to reduce the systematic error on w_0 , due to the precise determination in experiment.
- The overall error can be reduced below 2‰

