Nucleon Axial and Electromagnetic Form Factors from 2+1+1-flavor QCD

Yong-Chull Jang

(PNDME Collaboration)

The 37th International Symposium on Lattice Field Theory

Outline

 Various systematics in calculation of nucleon EM form factors [arXiv:1906.07217]

Lattice Methodology

Ensemble ID	<i>a</i> (fm)	$M_{\pi}^{ m sea}$ (MeV)	$M_{\pi}^{ m val}$ (MeV)	$L^3 \times T$	$M_{\pi}^{\mathrm{val}}L$	au/a	N _{conf}	$N_{ m meas}^{ m HP}$	$N_{\rm meas}^{ m LP}$
a15 <i>m</i> 310	0.1510(20)	306.9(5)	320(5)	$16^3 imes 48$	3.93	$\{5, 6, 7, 8, 9\}$	1917	7668	122,688
a12m310	0.1207(11)	305.3(4)	310.2(2.8)	$24^3 imes 64$	4.55	{8, 10, 12}	1013	8104	64,832
a12m220S	0.1202(12)	218.1(4)	225.0(2.3)	$24^3 imes 64$	3.29	$\{8, 10, 12\}$	946	3784	60,544
a12m220	0.1184(10)	216.9(2)	227.9(1.9)	$32^3 imes 64$	4.38	$\{8, 10, 12\}$	744	2976	47,616
a12m220L	0.1189(09)	217.0(2)	227.6(1.7)	$40^3 imes 64$	5.49	$\{8, 10, 12, 14\}$	1000	4000	128,000
a09m310	0.0888(08)	312.7(6)	313.0(2.8)	$32^3 imes 96$	4.51	$\{10, 12, 14, 16\}$	2263	9052	144,832
a09 <i>m</i> 220	0.0872(07)	220.3(2)	225.9(1.8)	$48^3 imes 96$	4.79	$\{10, 12, 14, 16\}$	964	7712	123,392
a09m130W	0.0871(06)	128.2(1)	138.1(1.0)	$64^3 imes 96$	3.90	$\{8,10,12,14,16\}$	1290	5160	165,120
a06 <i>m</i> 310	0.0582(04)	319.3(5)	319.6(2.2)	$48^3 imes 144$	4.52	$\{16, 20, 22, 24\}$	1000	8000	64,000
a06m310W						$\{18, 20, 22, 24\}$	500	2000	64,000
a06 <i>m</i> 220	0.0578(04)	229.2(4)	235.2(1.7)	$64^3 imes 144$	4.41	$\{16, 20, 22, 24\}$	650	2600	41,600
a06m220W						$\{18, 20, 22, 24\}$	649	2596	41,536
a06 <i>m</i> 135	0.0570(01)	135.5(2)	135.6(1.4)	$96^3 imes 192$	3.7	$\{16, 18, 20, 22\}$	675	2700	43,200

- Clover on the $N_f = 2 + 1 + 1$ HISQ Ensembles generated by MILC collaboration
- different volumes for the same pion mass and lattice spacing
- "W": covariant gaussian smearing with larger width
- High statistics data at a = 0.09 fm
- truncated solver method with bias correction for all τ/a
- Thanks for computing allocations to NERSC, OLCF, USQCD, and LANL IC

Nucleon Axial Form Factors

Axial Form Factor Decomposition

• form factors for axial $A_\mu = ar u \gamma_\mu \gamma_5 d$ and pseudoscalar $P = ar u \gamma_5 d$ interactions

$$\langle N(\vec{p}_f) | A_{\mu}(\vec{Q}) | N(\vec{p}_i) \rangle = \overline{u}(\vec{p}_f) \left[\frac{G_A(Q^2)\gamma_{\mu} + q_{\mu} \frac{\widetilde{G}_P(Q^2)}{2M}}{2M} \right] \gamma_5 u(\vec{p}_i)$$

$$\langle N(\vec{p}_f) | P(\vec{q}) | N(\vec{p}_i) \rangle = \overline{u}(\vec{p}_f) \left[\frac{G_P(Q^2)\gamma_5}{2M} \right] u(\vec{p}_i)$$

$$q = p_f - p_i, \ Q^2 = -q^2 = \vec{p}_f^2 - (E - M)^2, \ \vec{p}_i = 0$$

• charge, charge radius

$$G_A(0) \equiv g_A, \quad \langle r_A^2 \rangle = -6 \frac{d}{dQ^2} \left(\frac{G_A(Q^2)}{G_A(0)} \right) \Big|_{Q^2=0}$$

• isovector current on the lattice $A^{u-d}_\mu = ar u \gamma_\mu \gamma_5 u - ar d \gamma_\mu \gamma_5 d$

$$\langle p|A_{\mu}|n
angle = \langle p|A_{\mu}^{u-d}|p
angle$$
 (isospin limit)

Axial Form Factor $G_A(Q^2)$ and Charge Radius $\langle r_A^2 \rangle$

[Y.-C. Jang. et. al, PNDME, Lattice 2018]

- Lattice calculation results in a smaller axial charge radius.
- 11-point extrapolation $\langle r_A^2 \rangle (a, M_\pi, M_\pi L)$:

 $r_A = 0.481(58)(62) \,\mathrm{fm}, \, \mathcal{M}_A = 1.42(17)(18) \,\mathrm{GeV}$ from z-expansion fit @ z^{3+4}

 $r_A = 0.505(13)(6) \,\mathrm{fm}, \ \ \mathcal{M}_A = 1.35(3)(2) \,\mathrm{GeV}$ from dipole fit

systematic error: difference of $\langle r_A^2 \rangle$ from two physical ensembles

 Not much changes from r_A = 0.48(4)fm [R. Gupta, et. al.(PNDME) PRD96, 114503 (2017)], although statistics is increased and data set is enlarged.

PCAC and **Pion-pole** Dominance

PCAC relation (R₁ + R₂ = 1) is not satisfied.

$$2\widehat{m}G_P(Q^2) = 2M_NG_A(Q^2) - \frac{Q^2}{2M_N}\widetilde{G}_P(Q^2)$$

$$R_1 = \frac{Q^2}{4M_N^2} \frac{\tilde{G}_P(Q^2)}{G_A(Q^2)} , \ R_2 = \frac{2\widehat{m}}{2M_N} \frac{G_P(Q^2)}{G_A(Q^2)}$$

• Pion-pole dominance hypothesis $(R_3 = 1)$ shows a large deviation as $Q^2 \rightarrow 0$, but remains close to $R_1 + R_2$.

$$R_3 = \frac{Q^2 + M_{\pi}^2}{4M_N^2} \frac{\tilde{G}_P(Q^2)}{G_A(Q^2)}$$

O(a) improvement of A_μ does not fix PCAC.
 [R. Gupta, et. al.(PNDME) PRD96, 114503]

 As a consequence of lacking the pion-pole dominace, the coupling g^{*}_P is about 1/2 of the experimental value (g^{*}_P/g_A)_{exp} ~ 6.3, [μ⁻ + p → ν_μ + n]

$$g_P^* \equiv \frac{m_\mu}{2M_N} \tilde{G}_P(0.88m_\mu^2)$$

Extracting Form Factors from 3-pt Correlators $C_{\Gamma}^{(3pt)}$

• Matrix elements $\mathcal{M}_{i'j} \equiv \langle i' | \mathcal{O}_{\Gamma} | j \rangle$ are extracted from a simultaneous fit to the correlator $C_{\Gamma}^{(3pt)}$ calculated at multiple τ .

$$\begin{split} \mathcal{C}_{\Gamma}^{(3\text{pt})}(t;\tau;\pmb{p}',\pmb{p}=\pmb{0}) &= |\mathcal{A}_{0}'||\mathcal{A}_{0}|\langle 0'|\mathcal{O}_{\Gamma}|0\rangle e^{-E_{0}t-M_{0}(\tau-t)} \\ &+ |\mathcal{A}_{1}'||\mathcal{A}_{1}|\langle 1'|\mathcal{O}_{\Gamma}|1\rangle e^{-E_{1}t-M_{1}(\tau-t)} + |\mathcal{A}_{2}'||\mathcal{A}_{2}|\langle 2'|\mathcal{O}_{\Gamma}|2\rangle e^{-E_{2}t-M_{2}(\tau-t)} \\ &+ |\mathcal{A}_{0}'||\mathcal{A}_{1}|\langle 0'|\mathcal{O}_{\Gamma}|1\rangle e^{-E_{0}t-M_{1}(\tau-t)} + |\mathcal{A}_{1}'||\mathcal{A}_{0}|\langle 1'|\mathcal{O}_{\Gamma}|0\rangle e^{-E_{1}t-M_{0}(\tau-t)} \\ &+ |\mathcal{A}_{0}'||\mathcal{A}_{2}|\langle 0'|\mathcal{O}_{\Gamma}|2\rangle e^{-E_{0}t-M_{2}(\tau-t)} + |\mathcal{A}_{2}'||\mathcal{A}_{0}|\langle 2'|\mathcal{O}_{\Gamma}|0\rangle e^{-E_{2}t-M_{0}(\tau-t)} \\ &+ |\mathcal{A}_{1}'||\mathcal{A}_{2}|\langle 1'|\mathcal{O}_{\Gamma}|2\rangle e^{-E_{1}t-M_{2}(\tau-t)} + |\mathcal{A}_{2}'||\mathcal{A}_{1}|\langle 2'|\mathcal{O}_{\Gamma}|1\rangle e^{-E_{2}t-M_{1}(\tau-t)} + \cdots \end{split}$$

• (A'_i, E_i) for proton with p' and (A_j, M_j) for proton at rest are taken from 2-pt correlator fits (4-state).

• 3*-state fit:
$$\langle 2' | \mathcal{O}_{\Gamma} | 2 \rangle = 0$$

• Decompose the ground state matrix elements $\langle 0' | \mathcal{O}_{\Gamma} | 0 \rangle = K_{A,\Gamma} G_A + K_{P,\Gamma} \widetilde{G}_P + K_{PS,\Gamma} G_P$

Г	$\gamma_5\gamma_1$	$\gamma_5\gamma_2$	$\gamma_5\gamma_3$	$\gamma_5\gamma_4$	γ_5
$\operatorname{Re} C_{\Gamma}^{(3pt)}$				$q_3\{2M_0G_A-(E_0-M_0)\widetilde{G}_P\}$	q_3G_P
$\operatorname{Im} C_{\Gamma}^{(3pt)}$	$q_1q_3\widetilde{G}_P$	$-q_2q_3\widetilde{G}_P$	$2M_0(M_0+E_0)G_A-q_3^2\widetilde{G}_P$		

- cannot fit A_4 with small p' to 3^{*}-state spectral decomposition
- ChPT including $N\pi$ state gives a large shift in G_P [O. Bär, PRD99, 054506 (2019)]
- spectrum from 2-pt correlator does not show $N\pi$ state.

Axial Current A₄ 3-pt Correlator

[arXiv:1905.06470]

[3*-state]

E_i, *A'_i* and *M_j*, *A_j* are taken from 4-state fits to nucleon two-point correlator. (*i*, *j* = 0, 1, 2)

[relaxed 2-state]

• E_0, A'_0 and M_0, A_0 are taken from nucleon two-point correlator fits. Excited state parameters are free.

	3*	-state	relaxed 2-state		
n ²	$\chi^2/d.o.f$	<i>p</i> -value	$\chi^2/d.o.f$	<i>p</i> -value	
1	21.78	$< 5 imes 10^{-5}$	0.698	0.76	
2	19.36	$< 5 imes 10^{-5}$	1.654	0.06	
3	11.79	$< 5 imes 10^{-5}$	2.018	0.02	

Nucleon Spectrum from A₄

[arXiv:1905.06470]

• E_1 and M_1 are extracted from the relaxed 2-state fits to $A_4(\mathbf{p}')$, $a\mathbf{p}' = 2\pi \mathbf{n}/L$

- The rest mass for E_1 is $M_1' = \sqrt{E_1^2 c^2 p^2} = \sqrt{E_1^2 E_0^2 + M_0^2}.$
- $M_1' < M_1$: $|1'\rangle$ is not connected with $|1\rangle$ by the Lorentz boost.
- $e^{(M_j E_i)t}$ for a fixed τ : $-(M_0 E_0) \simeq M_1 E_1 < -(M_0 E_1) \simeq M_1 E_0$ • $\mathcal{M}_{i'i} = \langle i' | \mathcal{O} | j \rangle, \ r_i^{(\prime)} = |\mathcal{A}_i^{(\prime)}| / |\mathcal{A}_0|.$

n ²	$\mathcal{M}_{0'0}$	$r_1 \mathcal{M}_{0'1}$	$r_1'\mathcal{M}_{1'0}$	$r_1'r_1\mathcal{M}_{1'1}$
1	$3.35(7.62) imes 10^{-1}$	4.18(59)	-6.41(67)	1.84(82)
2	$-0.27(1.39) \times 10^{-2}$	3.18(14)	-4.36(08)	0.75(42)
3	$-2.11(8.88) \times 10^{-3}$	2.46(12)	-3.49(08)	0.73(46)

Structure of spectrum accessed at fixed n^2

[arXiv:1905.06470]

$$(Q_i^2 = p^2 - (E_i - M_0)^2)$$

• Given momentum p' insertion, pion absorption and emission are paired.

$$0 \rightarrow 0'$$
 is paired with $1 \rightarrow 1'$ at the same Q_0^2
 $0 \rightarrow 1'$ is paired with $1 \rightarrow 0'$ at the same Q_0^2

Excited State Spectrum

[arXiv:1905.06470]

- Δ_1 : energy gap for the 1st excited state, which is extracted from C^{2pt} .
- $\Delta M_1^{(\prime)} = M_1^{(\prime)} M_0$, $\Delta E_1 = E_1 E_0$, where $M_1^{(\prime)}$, E_1 are extracted from $C^{3\text{pt}}[A_4]$.
- different excited state spectrum from C^{2pt} and $C^{3pt}[A_4]$
- $C^{3\text{pt}}[A_4]$ reveals that there are large number of excited states.
- $\Delta M_1'(\mathbf{n}^2 = 1) \sim M_{\pi}$ corresponds to the lowest level accessed from $C^{3\mathrm{pt}}[A_4]$.

	\mathbf{n}^2 : ΔM_1	\mathbf{n}^2 : $\Delta M'_1$		
$N\pi$		1: 0.080(13)		
$(N\pi\pi)_1$	1: 0.114(09)	2: 0.108(08)	3: 0.124(10)	
$(N\pi\pi)_2$	2: 0.152(08)	5: 0.144(11)	6: 0.157(12)	

PCAC with Excited States from A₄

- C^{3pt}[A_i] (i = 1, 2, 3) and C^{3pt}[P] are reanalyzed with 2-state fit using the excited states extracted from C^{3pt}[A₄].
- PCAC is satisfied better for all Q^2 .
- Pion-pole dominance becomes a prominent hypothesis.
- The deviation from the exact limit (y = 1) diminises as $a \rightarrow 0$, $M_{\pi} \rightarrow 135 {
 m MeV}$.

$\widetilde{G}_P(Q^2)$ and g_P^* with Excited States from A_4

excited states from 2-point correlators

a12m220L + 🔶 2.5 a09m310 ++a09m220 +++a09m130 ---- $(m_{\mu}/2M_N)\widetilde{G}_P/g_A$ a06m310 2.0 a06m135 1.5 0.5 0.0 0.0 0.2 0.6 0.8 1.4 04 Q² [GeV²] 4.0 a12m310 AMA a12m220L AMA +↔+ a09m310 a09m220 a09m130 AMA a06m310 AMA 3.0 a06m220 AMA a06m135 AMA ÷Ēextrap. 🛏 g_p^*/g_A 2.0 1.0 0.02 0.04 0.06 0.08 0.1 0.12 M_{π}^2 [GeV²]

[R. Gupta, et. al.(PNDME) PRD96, 114503]

excited states from 3-point A₄ correlators

 $M_{\pi} \rightarrow 135 \text{ MeV}$

14 / 29

$G_A(Q^2)$ with Excited States from A_4

- (Fit A): 3*-state fit. Excited states are taken from 2-point correlator fits, which include 4 states. [PNDME, Lattice 2018]
- (Fit B): 2-state fit. Reanalyze G_A(Q² ≠ 0) using excited states from A₄.
- (Fit C): 2-state fit. Reanalyze g_A using the lowest level of ΔM'₁, which is derived from ΔE₁ of A₄(n² = 1), in addition to Fit B.
- Dipole curve represents the CCFV fit result (r_A²) from the lattice data in (Fit A).

Summary (1)

- $C^{3pt}[A_4]$ can be used to extract the excited states that couple to axial current A_{μ} .
- The PCAC is satisfied.
- Undershooting of g_P^* , $\langle r_A^2 \rangle$, g_A could be understood.
- $C^{3\text{pt}}[A_4]$ vanishes at $Q^2 = 0$.
- $C^{3 pt}[A_4]$ with $Q^2
 eq 0$ reveals several number of excited states $\Delta M_1 \lesssim 3 M_\pi.$
- Further consideration is required to treat the excited state systematics in $\langle r_A^2\rangle$ and g_{A^*}

Nucleon Electromagnetic Form Factors

Form Factor Decomposition

• EM form factors, charge, magnetic moment, charge radii :

$$\langle N(\vec{p}_f) | V_{\mu}(\vec{q}) | N(\vec{p}_i) \rangle = \overline{u}(\vec{p}_f) \left[F_1(Q^2) \gamma_{\mu} + \sigma_{\mu\nu} q_{\nu} \frac{F_2(Q^2)}{2M} \right] u(\vec{p}_i)$$

$$q = p_f - p_i, \ Q^2 = -q^2 = \vec{p}_f^2 - (E - M)^2, \ \vec{p}_i = 0$$

$$\begin{aligned} G_E(Q^2) &= F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2) \to \langle r_E^2 \rangle, \ G_E(0) \equiv g_V \\ G_M(Q^2) &= F_1(Q^2) + F_2(Q^2) \qquad \to \langle r_M^2 \rangle, \ G_M(0)/g_V \equiv \mu \end{aligned}$$

$$\langle r_{E,M}^2 \rangle = -6 \frac{d}{dQ^2} \left. \left(\frac{G_{E,M}(Q^2)}{G_{E,M}(0)} \right) \right|_{Q^2=0}$$

• Isovector current $V^{u-d}_{\mu}=ar{u}\gamma_{\mu}u-ar{d}\gamma_{\mu}d$ on the lattice

$$\langle p | V_{\mu}^{u-d} | p \rangle = \langle p | V_{\mu}^{em} | p \rangle - \langle n | V_{\mu}^{em} | n \rangle$$

 $V_{\mu}^{em} = \frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d$

Extraction of G_E

- Re $C[V_4] \rightarrow q_i G_E / \sqrt{2E(E+M)}$
- Re C[V₄] converges from above: could overestimate the G_E
- G_E/g_V versus Q^2/M_N^2 : all 13 calculations fall into a thin band
- Comparison to the experimental data is made with the Kelly parameterization.

Extraction of G_M

- Re $C[V_i] \rightarrow -\epsilon_{ij3}q_j G_M/\sqrt{2E(E+M)}$
- For the small Q² (n² = 1, 2), the convergence is from below: could underestimates the G_M Or, a large finite volume effect at small Q² ?
 [B. C. Tiburzi, PRD 77, 014510 (2008)]
- G_M/g_V versus Q^2/M_N^2 : all 13 calculations fall into a thin band

Estimate of $G_M(Q^2 = 0)$

- G_M/G_E (or G_E/G_M) for $Q^2 \lesssim 0.6 {\rm GeV}^2$ is approximately linear in Q^2 .
- $G_M(0)$: a linear fit to G_M/G_E incluing 6 (or 5 when data lacks) low Q^2 point is extrapolated to $Q^2 = 0$.
- The derived data points stabilizes the Q^2 fit, and thus extraction of charge radius r_M .

 $(\mu_{\rm phys}^{p-n} = 4.7058)$

Form Factor Q² Parameterization

dipole

$$G_E(Q^2) = \frac{G_E(0)}{(1+Q^2/\mathcal{M}_E^2)^2} \implies \langle r_E^2 \rangle = \frac{12}{\mathcal{M}_E^2}$$

• z-expansion

$$G_{E}(Q^{2}) = \sum_{k=0}^{\infty} a_{k} z(Q^{2})^{k}, \ z = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}} + \overline{t_{0}}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}} + \overline{t_{0}}}}, \ (t_{\text{cut}} = 4M_{\pi}^{2})$$

• weak unitarity constraint: a_k are bounded and decreasing at sufficiently large k

$$\sum_{k=n}a_k^2<\infty$$

We impose a prior $|a_k| < 5$ for G_E and $G_M/5$. crucial to see a convergence

• sum rules implement $Q^n G_E(Q^2) \to 0$ for n = 0, 1, 2, 3: $\mathcal{O}(1/k^4)$ fall-off of a_k strong constraint

$$\sum_{k=0}^{k_{\max}} a_k = 0, \quad \sum_{k=n}^{k_{\max}} k(k-1) \dots (k-n+1) a_k = 0 \quad (n = 1, 2, 3)$$

• Fits with the sum rules slowly converges. But, later it converges to the same value to the fit without the sum rules. Avoiding overfitting, we take z^4 fit.

• k = 0: dipole fit

 \bullet with a cutoff $Q^2 \sim 1 {\rm GeV}^2$, we drop the data points with large discretization error.

r_E^2 : Chiral, Continuum, Finite Volume (CCFV) Extrapolation

r_M^2 : Chiral, Continuum, Finite Volume (CCFV) Extrapolation

dipole : $0.495(29)(41) \text{ fm}^2$ $z^4 : 0.450(65)(102) \text{ fm}^2$

$\mu_p - \mu_n$: Chiral, Continuum, Finite Volume (CCFV) Extrapolation

$$\langle \mu
angle = c_1^{\mu} + c_2^{\mu} a + c_3^{\mu} M_{\pi} + c_4^{\mu} M_{\pi} \left(1 - \frac{2}{M_{\pi}L} \right) e^{-M_{\pi}L}$$

Summary (2)

- We analyzed 11 ensembles of 2 + 1 + 1-flavor HISQ sea quarks with clover valence quark. ($a \approx 0.06, 0.09, 0.12, 0.15 \,\mathrm{fm}$, $M_{\pi} \approx 135, 220, 310 \,\mathrm{MeV}$, $3.3 \lesssim M_{\pi}L \lesssim 5.5$)
- With high statistics of O(10⁵), we can address various systematics (ESC, scale setting, CCFV and kinematic extrapolations) in form factor calculations.
- The weak unitarity constraint is crucial to stabilize the z-expansion.
- *z*-expansion results are consistent with the dipole fit, but the errors are 2–3 times larger.
- The extraction of $\langle r_E^2 \rangle$, $\langle r_M^2 \rangle$, μ could have $\mathcal{O}(10\%)$ errors due to each (1) statistics and ESC, and (2) parameterization of Q^2 behavior.
- We do not consider the smaller values of $\langle r_E^2 \rangle, \langle r_M^2 \rangle, \mu$ implies a significant deviations from the experimental values.
- $\bullet\,$ Data points at smaller $Q^2 < 0.1 {\rm GeV}^2$ are highly desirable in future calculations.

	$\langle r_E^2 \rangle$	$\sqrt{\langle r_E^2 \rangle}$	$\langle r_M^2 \rangle$	$\sqrt{\langle r_M^2 \rangle}$	μ
	(fm ²)	(fm)	(fm ²)	(fm)	(Bohr Magneton)
dipole fit	0.586(17)(13)	0.765(11)(8)	0.495(29)(41)	0.704(21)(29)	3.975(84)(125)
z ⁴ fit	0.591(41)(46)	0.769(27)(30)	0.450(65)(102)	0.671(48)(76)	3.939(86)(138)
Combined fit	0.564(114)	0.751(76)	0.459(189)	0.678(140)	3.922(83)

$$\begin{split} &\sqrt{\langle r_E^2\rangle}|_{\exp}{=}0.929(27)\,\text{fm}\;,\; \sqrt{\langle r_M^2\rangle}|_{\exp}{=}\;0.849(11)\,\text{fm}\\ &\mu|_{\exp}{=}4.7058\;=1+\kappa_p\,-\,\kappa_n\,,\quad \kappa_p\,=\,1.79284735(1)\,,\;\kappa_n\,=\,-1.91304273(45) \end{split}$$

Thank you for your attention.

Nucleon Structure, Proton Radius

• *e* – *p* scattering, *H* laser spectroscopy [CODATA2014 RMP **88**, 035009 (2016)] $r_{E,p} = 0.875(6) \, \mathrm{fm}$

 $r_{E,p} = 0.8409(4) \, \mathrm{fm}$

- muonic hydrogen laser spectroscopy
 [R. Pohl *et.al.*, Nature 466, 213 (2010)]

 [A. Antognini *et al.*, Science 339, 417 (2013)]
- Lattice QCD
- New Physics (?)

Controlling Excited States: multistates fits

$$C^{2\text{pt}}(t, \boldsymbol{p}) = |\mathcal{A}_0|^2 e^{-E_0 t} + |\mathcal{A}_1|^2 e^{-E_1 t} + |\mathcal{A}_2|^2 e^{-E_2 t} + |\mathcal{A}_3|^2 e^{-E_3 t} + \cdots$$

- $\bullet \ \ \text{2-state fit} \rightarrow \text{4-state fit} \\$
- The lowest three states Energies and Amplitudes are feed into 3-pt correlator analysis.
- plot effective mass from fits and data $E_{\rm eff}(t) = \log \frac{C^{\rm 2pt}(t)}{C^{\rm 2pt}(t+1)} \rightarrow E_0$

Controlling Excited States: different smearing size

• Covariant gaussian smearing: $[1 + \sigma^2 \nabla^2 / (4N)]^N$

• 4-state fit,
$$\boldsymbol{p} = 0$$

 $C^{2\text{pt}}(t, \boldsymbol{p}) = |\mathcal{A}_0|^2 e^{-M_0 t} + |\mathcal{A}_1|^2 e^{-M_1 t} + |\mathcal{A}_2|^2 e^{-M_2 t} + |\mathcal{A}_3|^2 e^{-M_3 t} + \cdots$

- Larger size of smearing radius improves an overlap with the ground state \rightarrow plateau appears from earlier t
- At large t, the correlator become noisier

Extracting Form Factors from 3-pt Correlaotrs

• Matrix elements $\langle m' | \mathcal{O}_{\Gamma} | n \rangle$ are extracted from a simultaneous fit to the correlator $C_{\Gamma}^{(3pt)}$ calculated at multiple source and sink separation τ .

$$\begin{split} C_{\Gamma}^{(3\text{pt})}(t;\tau;\boldsymbol{p}',\boldsymbol{p}=\boldsymbol{0}) &= |\mathcal{A}_{0}'||\mathcal{A}_{0}|\langle\boldsymbol{0}'|\mathcal{O}_{\Gamma}|\boldsymbol{0}\rangle e^{-E_{0}t-M_{0}(\tau-t)} \\ &+ |\mathcal{A}_{1}'||\mathcal{A}_{1}|\langle\boldsymbol{1}'|\mathcal{O}_{\Gamma}|\boldsymbol{1}\rangle e^{-E_{1}t-M_{1}(\tau-t)} + |\mathcal{A}_{2}'||\mathcal{A}_{2}|\langle\boldsymbol{2}'|\mathcal{O}_{\Gamma}|\boldsymbol{2}\rangle e^{-E_{2}t-M_{2}(\tau-t)} \\ &+ |\mathcal{A}_{0}'||\mathcal{A}_{1}|\langle\boldsymbol{0}'|\mathcal{O}_{\Gamma}|\boldsymbol{1}\rangle e^{-E_{0}t-M_{1}(\tau-t)} + |\mathcal{A}_{1}'||\mathcal{A}_{0}|\langle\boldsymbol{1}'|\mathcal{O}_{\Gamma}|\boldsymbol{0}\rangle e^{-E_{1}t-M_{0}(\tau-t)} \\ &+ |\mathcal{A}_{0}'||\mathcal{A}_{2}|\langle\boldsymbol{0}'|\mathcal{O}_{\Gamma}|\boldsymbol{2}\rangle e^{-E_{0}t-M_{2}(\tau-t)} + |\mathcal{A}_{2}'||\mathcal{A}_{0}|\langle\boldsymbol{2}'|\mathcal{O}_{\Gamma}|\boldsymbol{0}\rangle e^{-E_{2}t-M_{0}(\tau-t)} \\ &+ |\mathcal{A}_{1}'||\mathcal{A}_{2}|\langle\boldsymbol{1}'|\mathcal{O}_{\Gamma}|\boldsymbol{2}\rangle e^{-E_{1}t-M_{2}(\tau-t)} + |\mathcal{A}_{2}'||\mathcal{A}_{1}|\langle\boldsymbol{2}'|\mathcal{O}_{\Gamma}|\boldsymbol{1}\rangle e^{-E_{2}t-M_{1}(\tau-t)} + \cdots \end{split}$$

•
$$\langle 2' | \mathcal{O}_{\Gamma} | 2 \rangle = 0$$

• Decompose the ground state matrix elements

$$\langle 0' | \mathcal{O}_{\Gamma} | 0 \rangle = K_{E,\Gamma} G_E(Q^2) + K_{M,\Gamma} G_M(Q^2)$$

• Data is displayed using the following ratio.

$$\mathcal{R}_{\Gamma}(t,\tau,\boldsymbol{p}',\boldsymbol{p}) = \frac{C_{\Gamma}^{(3\text{pt})}(t,\tau;\boldsymbol{p}',\boldsymbol{p})}{C^{(2\text{pt})}(\tau,\boldsymbol{p})} \times \left[\frac{C^{(2\text{pt})}(t,\boldsymbol{p})C^{(2\text{pt})}(\tau,\boldsymbol{p})C^{(2\text{pt})}(\tau-t,\boldsymbol{p}')}{C^{(2\text{pt})}(\tau,\boldsymbol{p}')C^{(2\text{pt})}(\tau,\boldsymbol{p}')C^{(2\text{pt})}(\tau-t,\boldsymbol{p})}\right]_{\substack{\tau \to \infty \\ 0 \ll t, \tau-t}}^{1/2}$$

Extraction of G_E

- Im $C[V_i] \rightarrow Kq_iG_E$, $K = 1/\sqrt{2E(E+M)}$
- Re $C[V_4] \rightarrow K(E+M)G_E$
- Two channels result in systematically different G_E mostly for small $Q^2 \lesssim 0.2$, where the charge radius is sensitive.

Extraction of *GE*

- Excited states contaminations to $\operatorname{Im} C[V_i]$ and $\operatorname{Re} C[V_4]$ are very different.
- a larger excited state effect in $\text{Im } C[V_i]$ for a small momentum (top: $n^2 = 2$)
- $G_E(0)$ is not accessible to $\text{Im } C[V_i]$.
- We use G_E from $\operatorname{Re} C[V_4]$.

z-expansion: Experimental Data

[rebinned experimental data, D. Higinbotham]

- *z*-expansion converges for $k \ge 5$
- fits with/without sum rules converges to the same value

Comparison with Other Near Physical Pion Mass Calculations

- For $Q^2 < 0.2 \text{ GeV}^2$, $G_E(G_M)$ from lattice calculations approaches the Kelly parameterization of experimental data from above (below).
- PACS'18 and LHPC'17 data are consistent with the rest, but the errors are larger.
- All the PACS'18A data are at $Q^2 < 0.1\,{\rm GeV}^2$ and show better agreement with the Kelly curve.

Comparison with Other Near Physical Pion Mass Calculations

	a [fm]	M_{π} [MeV]	$L^3 \times T$	$M_{\pi}^{val}L$	τ/a	N _{conf}	Nmeas	Action
a09m130W	0.0871(6)	138.1(1.0)	$64^3 imes 96$	3.90	$\{8, 10, 12, 14, 16\}$	1290	165,120	2+1+1 HISQ
a06m135	0.0570(1)	135.6(1.4)	$96^3\times192$	3.7	$\{16,18,20,22\}$	675	43,200	+ Clover
ETMC'18	0.0809(4)	138(1)	$64^3 imes 128$	3.62	$\{12,14,16,18,20\}$	750	3K–48K	2+1+1 TM
ETMC'18	0.0938(3)	130(2)	$64^3 imes 128$	3.97	$\{12, 14, 16\}$	330–1040	5K–17K	2 TM
PACS'18A	0.0846(7)	146	$96^3 imes 96$	6.01	{15}	200	12,800	2+1 Clover
PACS'18	0.0846(7)	135	$128^3\times128$	7.41	$\{10,12,14,16\}$	20	2.5K-10K	2+1 Clover
LHPC'17	0.093	135	$64^3 \times 64$	4.08	{10, 13, 16}	442	56,576	2+1 Clover

• All the PACS'18A data are at $Q^2 < 0.1 \,\mathrm{GeV}^2$ and show better agreement with the Kelly curve. Further calculations with multiple lattice spacings, larger Q^2 points, higher statistics are interesting.

Axial Form Factors G_A and Charge Radius $\langle r_A^2 \rangle$

3-state analysis results in a larger $\langle r_A^2 \rangle$. \Rightarrow Data from two physical ensembles become close. The abunical limit still above large deviation from the aurenimental

 \Rightarrow The physical limit still shows large deviation from the experimental data.

Controlling Excited State Contribution to G_A , \widetilde{G}_P , G_P

Very similar Excited State Contamination in G_P and G_P