Vector current renormalisation in momentum subtraction schemes using the HISQ action

University of Glasgow

Lattice 2019, Wuhan, 16-22 June

Motivations

- Vector current renormalisations are needed for various HPQCD projects
- HPQCD calculations have used form factor (F(0)) methods [1703.05552]
 - Precise; results on finer lattices obtained by extrapolation enabled by a comparison to lattice perturbation theory
- Computationally expensive
 - $\bigcirc\,$ Desire faster method; SMOM offers this
- Very fine lattices now available
- QED effects to be computed
- Z_V can be examined on its own (unlike Z_m [1805.06225]) • Good place to check systematics

Strategy

- All share a lattice perturbation theory expansion ○ $1 + c_1 \alpha_s (1/a) + c_2 \alpha_s (1/a)^2 + ...$
- \bigcirc Compare SMOM and $F(0) Z_V$ determinations
- Different discretisation effects
 - Condensates can appear in MOM calculations
- Compare merits
- Compare SMOM and $F(0) Z_V$ determinations at high precision

Momentum subtraction schemes

$$G_V = \langle \chi(p_1) \left(\sum_x \overline{\chi}(x) \gamma_\mu \chi(x) e^{i(p_1 - p_2)x} \right) \overline{\chi}(p_2) \rangle$$

$$G_V = \langle \chi(p_1) \left(\sum_x \overline{\chi}(x) \gamma_\mu \chi(x) e^{i(p_1 - p_2)x} \right) \overline{\chi}(p_2) \rangle$$
$$\Lambda_V(p) = S^{-1}(p_1) G_V S^{-1}(p_2)$$

$$G_{V} = \langle \chi(p_{1}) \left(\sum_{x} \overline{\chi}(x) \gamma_{\mu} \chi(x) e^{i(p_{1}-p_{2})x} \right) \overline{\chi}(p_{2}) \rangle$$
$$\Lambda_{V}(p) = S^{-1}(p_{1}) G_{V} S^{-1}(p_{2})$$
$$Z_{V} = \frac{Z_{q}}{\operatorname{Tr}(P_{V} \Lambda_{V})}$$

$$\langle \partial_{\mu} J^{\mu}(x) \psi(y_1) \overline{\psi}(y_2) \rangle = \langle \delta_{y_2,x} \psi(y_1) \overline{\psi}(x) - \delta_{y_1,x} \psi(x) \overline{\psi}(y_2) \rangle$$

\bigcirc Fourier transforming, this becomes

$$iq_{\mu}G_{V}^{\mu}(p_{1},p_{2}) = S(p_{1}) - S(p_{2})$$

Lattice Ward identity

 $\bigcirc\,$ An exact vector Ward identity holds on the lattice

 $\Delta_{\mu} \langle J^{\mu}(x) \overline{\psi}(y_1) \psi(y_2) \rangle = \delta_{y_1, x} \langle \psi(y_2) \overline{\psi}(x) \rangle - \delta_{y_2, x} \langle \psi(x) \overline{\psi}(y_1) \rangle$

○ Fourier transforming

$$\begin{array}{l} (1 - e^{iq_{\mu}}) \sum_{\underline{x}} \langle \overline{\psi}(p_1) e^{-iq \cdot x} J^{\mu}(x) \psi(p_2) \rangle \\ \langle \psi(p_2) \overline{\psi}(p_1) \rangle - \langle \psi(p_1) \overline{\psi}(p_2) \rangle \end{array}$$

 \bigcirc An exact vector Ward identity holds on the lattice

 $\Delta_{\mu}\langle J^{\mu}(x)\overline{\psi}(y_{1})\psi(y_{2})\rangle = \delta_{y_{1},x}\langle\psi(y_{2})\overline{\psi}(x)\rangle - \delta_{y_{2},x}\langle\psi(x)\overline{\psi}(y_{1})\rangle$

○ Fourier transforming

$$\begin{split} (1 - e^{iq_{\mu}}) \sum_{\underline{x}} \langle \overline{\psi}(p_1) e^{-iq \cdot x} J^{\mu}(x) \psi(p_2) \rangle &= \\ \langle \psi(p_2) \overline{\psi}(p_1) \rangle - \langle \psi(p_1) \overline{\psi}(p_2) \rangle \\ \\ Z_q &= \frac{1}{12p^2} \operatorname{Tr}(\not p S^{-1}(p)) \ , \frac{Z_q}{Z_V} = \frac{1}{12q^2} \operatorname{Tr}((1 - e^{iq_{\mu}}) \Lambda_V^{\mu} \not q) \\ \\ \frac{1}{12q^2} \operatorname{Tr}\left((1 - e^{iq_{\mu}}) \Lambda_V^{\mu} \not q\right) &= \frac{1}{12q^2} \left[\operatorname{Tr}\left(S^{-1}(p_2) \not q \right) - \operatorname{Tr}\left(S^{-1}(p_1) \not q \right) \right] \\ \\ \\ \text{Different } "q's" \text{ are needed which are in general} \end{split}$$

different for different currents

 \bigcirc An exact vector Ward identity holds on the lattice

 $\Delta_{\mu}\langle J^{\mu}(x)\overline{\psi}(y_{1})\psi(y_{2})\rangle = \delta_{y_{1},x}\langle\psi(y_{2})\overline{\psi}(x)\rangle - \delta_{y_{2},x}\langle\psi(x)\overline{\psi}(y_{1})\rangle$

○ Fourier transforming

$$\frac{(1-e^{iq_{\mu}})\sum_{\underline{x}}\langle\overline{\psi}(p_{1})e^{-iq\cdot x}J^{\mu}(x)\psi(p_{2})\rangle}{\langle\psi(p_{2})\overline{\psi}(p_{1})\rangle-\langle\psi(p_{1})\overline{\psi}(p_{2})\rangle} =$$

$$Z_{q} = \frac{1}{12p^{2}} \operatorname{Tr}(\not p S^{-1}(p)) , \frac{Z_{q}}{Z_{V}} = \frac{1}{12q^{2}} \operatorname{Tr}((1 - e^{iq_{\mu}}) \Lambda_{V}^{\mu} \not q)$$
$$\frac{1}{12q^{2}} \operatorname{Tr}\left((1 - e^{iq_{\mu}}) \Lambda_{V}^{\mu} \not q\right) = \frac{1}{12q^{2}} \left[\operatorname{Tr}\left(S^{-1}(p_{2}) \not q\right) - \operatorname{Tr}\left(S^{-1}(p_{1}) \not q\right)\right]$$

12/32

 \bigcirc An exact vector Ward identity holds on the lattice \checkmark

 $\Delta_{\mu}\langle J^{\mu}(x)\overline{\psi}(y_{1})\psi(y_{2})\rangle = \delta_{y_{1},x}\langle\psi(y_{2})\overline{\psi}(x)\rangle - \delta_{y_{2},x}\langle\psi(x)\overline{\psi}(y_{1})\rangle$

○ Fourier transforming

$$\begin{aligned} (1 - e^{iq_{\mu}}) \sum_{\underline{x}} \langle \overline{\psi}(p_1) e^{-iq \cdot x} J^{\mu}(\underline{x}) \psi(p_2) \rangle &= \\ \langle \psi(p_2) \overline{\psi}(p_1) \rangle - \langle \psi(p_1) \overline{\psi}(p_2) \rangle \end{aligned}$$
$$Z_q &= \frac{1}{12p^2} \operatorname{Tr}(pS^{-1}(p)), \frac{Z_q}{Z_V} = \frac{1}{12q^2} \operatorname{Tr}((1 - e^{iq_{\mu}}) \Lambda_V^{\mu} p) \\ \frac{1}{12q^2} \operatorname{Tr}\left((1 - e^{iq_{\mu}}) \Lambda_V^{\mu} p\right) &= \frac{1}{12q^2} \left[\operatorname{Tr}\left(S^{-1}(p_2) p\right) - \operatorname{Tr}\left(S^{-1}(p_1) p\right) \right] \\ &= \frac{1}{12q^2} \operatorname{Tr}\left(S^{-1}(q) p\right) \end{aligned}$$

 \circ An exact vector Ward identity holds on the lattice

 $\Delta_{\mu}\langle J^{\mu}(x)\overline{\psi}(y_{1})\psi(y_{2})\rangle = \delta_{y_{1},x}\langle\psi(y_{2})\overline{\psi}(x)\rangle - \delta_{y_{2},x}\langle\psi(x)\overline{\psi}(y_{1})\rangle$

○ Fourier transforming

$$\begin{split} (1 - e^{iq_{\mu}}) \sum_{x} \langle \overline{\psi}(p_{1})e^{-iq \cdot x} J^{\mu}(x)\psi(p_{2})\rangle &= \\ \langle \psi(p_{2})\overline{\psi}(p_{1})\rangle - \langle \psi(p_{1})\overline{\psi}(p_{2})\rangle \end{split}$$
$$Z_{q} &= \frac{1}{12p^{2}} \operatorname{Tr}(pS^{-1}(p)) , \frac{Z_{q}}{Z_{V}} = \frac{1}{12q^{2}} \operatorname{Tr}((1 - e^{iq_{\mu}})\Lambda_{V}^{\mu}q) \\ \frac{1}{12q^{2}} \operatorname{Tr}\left((1 - e^{iq_{\mu}})\Lambda_{V}^{\mu}q\right) &= \frac{1}{12q^{2}} \left[\operatorname{Tr}\left(S^{-1}(p_{2})q\right) - \operatorname{Tr}\left(S^{-1}(p_{1})q\right)\right] \\ &= \frac{1}{12q^{2}} \operatorname{Tr}\left(S^{-1}(q)q\right) + \text{ condensates}? \end{split}$$

14/32

- An exact vector Ward identity holds on the lattice $\Delta_{\mu} \langle J^{\mu}(x) \overline{\psi}(y_1) \psi(y_2) \rangle = \delta_{y_1,x} \langle \psi(y_2) \overline{\psi}(x) \rangle - \delta_{y_2,x} \langle \psi(x) \overline{\psi}(y_1) \rangle$
- Fourier transforming

$$\begin{split} \left(1 - e^{iq_{\mu}}\right) \sum_{x} \langle \overline{\psi}(p_{1}) e^{-iq \cdot x} J^{\mu}(x) \psi(p_{2}) \rangle &= \\ \langle \psi(p_{2}) \overline{\psi}(p_{1}) \rangle - \langle \psi(p_{1}) \overline{\psi}(p_{2}) \rangle \\ Z_{q} &= \frac{1}{12p^{2}} \operatorname{Tr}(\not p S^{-1}(p)) , \frac{Z_{q}}{Z_{V}} = \frac{1}{12q^{2}} \operatorname{Tr}((1 - e^{iq_{\mu}}) \Lambda_{V}^{\mu} \not q) \\ \frac{1}{12q^{2}} \operatorname{Tr}\left((1 - e^{iq_{\mu}}) \Lambda_{V}^{\mu} \not q\right) &= \frac{1}{12q^{2}} \left[\operatorname{Tr}\left(S^{-1}(p_{2}) \not q\right) - \operatorname{Tr}\left(S^{-1}(p_{1}) \not q\right)\right] \\ &= \frac{1}{12q^{2}} \operatorname{Tr}\left(S^{-1}(q) \not q\right) + \text{ condensates}? \end{split}$$

We see no condensates for the conserved current in SMOM: $Z_V = 1$ exactly

RI-SMOM / RI'-MOM

RI-SMOM:

$$\frac{Z_q}{Z_V} = \frac{1}{12q^2} \operatorname{Tr}(q_{\mu} \Lambda_V^{\mu} q)$$

RI'-MOM:

$$\frac{Z_q}{Z_V} = \frac{1}{48} \operatorname{Tr}(\gamma_{\mu} \Lambda_V^{\mu})$$

- \bigcirc Older RI'-MOM scheme uses different kinematics and simpler Z_V (same $Z_q)$
- \bigcirc Requires a perturbative MOM to $\overline{\mathrm{MS}}$ matching
- Expect condensates there

Implementation

- Fix to Landau gauge
- \bigcirc Use momentum sources $e^{-ip\cdot x}$ $(DS=e^{-ip\cdot x})\colon$ multiple solves per configuration
- \bigcirc Only 20 configurations required for good precision
- Lytle & Sharpe [1306.3881] and HPQCD [1805.06225]

Set	β	$a [{\rm fm}]$	L_s	L_t	$am_l^{ m sea}$	$am_s^{\rm sea}$	$am_c^{ m sea}$
1	6.0	0.12404(66)	24	64	0.0102	0.0509	0.635
2	6.30	0.08872(47)	48	96	0.00363	0.0363	0.430
3	6.72	0.05922(33)	48	144	0.0048	0.024	0.286
4	7.00	0.04406(23)	64	192	0.00316	0.0158	0.188

- \bigcirc Calculate Z_V in RI'-MOM and RI-SMOM schemes for different a and μ
- \bigcirc Fit accounting for:
 - \bigcirc Discretisation effects $(a\mu)^n$
 - \bigcirc Possible condensates, i.e. $\langle A^2 \rangle / \mu^2$

18/32

$$Z_V^{\text{con-MOM}}(a,\mu) = 1 + \sum_i c_{a^2\mu^2}^{(i)} (a\mu/\pi)^{2i} + \sum_i c_{\alpha a^2\mu^2}^{(i)} (a\mu/\pi)^{2i} \alpha_{\overline{\text{MS}}}(1/a) + \sum_j c_{\text{cond}}^{(j)} \alpha_{\overline{\text{MS}}}(\mu) \frac{(1 \text{ GeV})^{2j}}{\mu^{2j}} \times [1 + c_{\text{cond},a^2}^{(j)} (a\Lambda/\pi)^2] + c_\alpha \alpha_{\overline{\text{MS}}}^4(\mu)$$

Discretisation errors

$$Z_V^{\text{con-MOM}}(a,\mu) = 1 + \sum_i c_{a^2\mu^2}^{(i)} (a\mu/\pi)^{2i} + \sum_i c_{\alpha a^2\mu^2}^{(i)} (a\mu/\pi)^{2i} \alpha_{\overline{\text{MS}}}(1/a) + \sum_j c_{\text{cond}}^{(j)} \alpha_{\overline{\text{MS}}}(\mu) \frac{(1 \text{ GeV})^{2j}}{\mu^{2j}} \times [1 + c_{\text{cond},a^2}^{(j)} (a\Lambda/\pi)^2] + c_\alpha \alpha_{\overline{\text{MS}}}^4(\mu)$$

Condensates

$$Z_V^{\text{con-MOM}}(a,\mu) = 1 + \sum_i c_{a^2\mu^2}^{(i)} (a\mu/\pi)^{2i} + \sum_i c_{\alpha a^2\mu^2}^{(i)} (a\mu/\pi)^{2i} \alpha_{\overline{\text{MS}}}(1/a) + \sum_j c_{\text{cond}}^{(j)} \alpha_{\overline{\text{MS}}}(\mu) \frac{(1 \text{ GeV})^{2j}}{\mu^{2j}} \times [1 + c_{\text{cond},a^2}^{(j)} (a\Lambda/\pi)^2] + c_\alpha \alpha_{\overline{\text{MS}}}^4(\mu)$$

 $Z_V^{\rm col}$

Higher order perturbation theory in $\overline{\mathrm{MS}}$ matching

$$\begin{aligned} \mathbf{a}^{\text{n-MOM}}(a,\mu) &= 1 + \sum_{i} c_{a^{2}\mu^{2}}^{(i)} (a\mu/\pi)^{2i} \\ &+ \sum_{i} c_{\alpha a^{2}\mu^{2}}^{(i)} (a\mu/\pi)^{2i} \alpha_{\overline{\text{MS}}}(1/a) \\ &+ \sum_{j} c_{\text{cond}}^{(j)} \alpha_{\overline{\text{MS}}}(\mu) \frac{(1 \text{ GeV})^{2j}}{\mu^{2j}} \\ &\times [1 + c_{\text{cond},a^{2}}^{(j)} (a\Lambda/\pi)^{2}] + c_{\alpha} \alpha_{\overline{\text{MS}}}^{4}(\mu) \end{aligned}$$

Condensates appear at 1% level in RI'-MOM but absent from SMOM

- SMOM conserved has no visible condensates
- Does SMOM local?
- $\bigcirc~Z_V^{F(0)}-Z_V^{\rm loc-SMOM}$ should be pure discretisation effects if there are no condensates

○ Lattice perturbation theory component cancels

Fit with just $(a\mu)^n$ and $\alpha(a\mu)^n$; no visible condensates

Applications to charm physics

- $\bigcirc~Z_V$ can be used in conjunction with already available charmonium data
- \bigcirc Obtain very precise J/ψ decay constant
- Calculate vector correlator time moments
 Z_V² ∑_t tⁿC_{J/ψ}(t)
 ⇒ a_µ^c

 $f_{J/\psi} = 0.4083(18) \text{ GeV} \text{ (preliminary)}$ PDG: 0.407(5) GeV

for n = 4 $\mathcal{M}_4 = 0.3155(22) \text{ GeV}^{-1}$ (preliminary) $0.3142(22) \text{ GeV}^{-1}$ expt. [0907.2110]

 $a^c_{\mu} = 1.443(18) \times 10^{-9}$ (preliminary) 1.470(15) $\times 10^{-9}$ BMW [1711.04980] 1.442(39) $\times 10^{-9}$ HPQCD [1403.1778]

Conclusions

- \bigcirc HISQ implementation of RI-SMOM Z_V
- Showed $Z_V = 1$ for the conserved current in SMOM
 - Condensate effects negligible
- \bigcirc Nonperturbative effects are $\sim 1\%$ in RI'-MOM
- Consistency between Z_V from SMOM and F(0) (and lattice pert. theory) demonstrated
- \bigcirc There are many future applications of these Z_V 's

