

Jochen Heitger, Fabian Joswig, Simon Kuberski

June 17, 2019

living.knowledge

Motivation

Motivation

- Charm quark mass is a basic parameter of the Standard Model
- Needed as parameter in the non-perturbative matching of QCD and HQET
- Renormalization factors and improvement coefficients have been determined non-perturbatively
- Determination of the light and strange quark masses on CLS ensembles almost finished *M. Bruno et al.* [1903.04094]

Setup

CLS ensembles

- 2 + 1 flavors of O(a) improved
 Wilson fermions and
 Lüscher-Weisz gluons.
- open boundary conditions in time direction
- ► Trajectory in this work: $Tr[M_q] = 2m_l + m_s = \text{const.}$ to keep $\tilde{g}_0^2 = g_0^2 \left(1 + \frac{1}{N_f} b_g a \text{Tr}[M_q]\right)$ constant up to $\mathcal{O}(a^2)$

Correlation functions for all possible flavor combinations (light, strange, heavy)

$$f_O^{rs}(x_0, y_0) = -\frac{a^6}{L^3} \sum_{\vec{x}, \vec{y}} \langle O^{rs}(x_0, \vec{x}) P^{rs}(y_0, \vec{y}) \rangle, \qquad O^{rs} = \bar{\Psi}^r(x) \Gamma \Psi^s(x)$$

Sources placed at $y_0 = a$ and $y_0 = T - a$, use 16 noise sources per time slice

Effective meson masses from pseudoscalar density and the vector current

Bare quark masses from PCAC relation:

$$m_{rs}(x_{o}) = \frac{\tilde{\partial}_{o}f_{A}^{rs}(x_{o}) + ac_{A}\partial_{o}^{*}\partial_{o}f_{P}^{rs}(x_{o})}{2f_{P}^{rs}(x_{o})}$$

Distance Preconditioning

Iterative solution of Dirac equation based on global residuum

$$\left|\sum_{y} D(x,y)S_h(y) - \eta(x)\right| < r_{\rm gl}$$

► Heavy propagator decays exponentially with m_h : $S_h(y) \propto \exp(-m_h(y_o - x_o))$ \rightarrow time slices far away from the source are exponentially suppressed

Solve this via Distance Preconditioning G.M. de Divitiis, R. Petronzio, N. Tantalo [1006.4028] Preconditioned system:

$$(PDP^{-1})(PS) = (P\eta), \quad P = \operatorname{diag}(p_i), \quad p_i = \exp(\alpha |y_0 - x_0|)$$

Monitor local residuum

$$r_{loc}(x_{o}, y_{o}) = \frac{|D(x_{o}, y_{o})S_{h}(y_{o}) - \eta(x_{o})|}{|S_{h}(y_{o})|}$$
at $y_{o} = \frac{7T}{8}$

• exemplary: H400 at $y_0/a = 84$

 SAP-preconditioned GCR solver S. Collins et al. [1701.05502] T. Korzec

https://github.com/to-ko/mesons

Distance Preconditioning - pseudoscalar heavy mesons on H400

Roadmap

- 1. Determine charm quark hopping parameter $\kappa_{\rm C}$ via interpolation in effective meson masses
 - Measurements for two values of κ_h provided by RQCD-collaboration $\in \frac{CLS}{Dreed}$
 - Interpolate to κ_{c} via matching of effective masses with physical value for
 - flavor-average $M = \frac{1}{3}(2m_D + m_{D_s})$
 - spin-flavor-average $M = \frac{1}{12} (6m_{D^*} + 2m_D + 3m_{D^*_s} + m_{D_s})$
- 2. To fix the bare charm quark mass, interpolate bare heavy quark masses to $\kappa_{
 m c}$
- 3. Renormalize and improve quark mass

Preliminary results

Effective masses - heavy mesons on N200

PCAC masses on N200 - heavy quarks

Renormalized quark mass

Compute the renormalized RGI charm quark mass from PCAC masses:

$$M_{c}^{\text{RGI}} = \frac{M}{\overline{m}(\mu_{\text{had}})} m_{cc,\text{R}}$$

$$\equiv Z_{\text{M}} m_{cc} \left[1 + \frac{(b_{\text{A}} - b_{\text{P}})}{Z} a m_{cc} - (b_{\text{A}} - b_{\text{P}})(r_{\text{m}} - 1) a \frac{\text{Tr}[M_{\text{q}}]}{N_{\text{f}}} + (\overline{b}_{\text{A}} - \overline{b}_{\text{P}}) a \text{Tr}[M_{\text{q}}] \right]$$

- ► $Z_{\rm M} = M/\overline{m}(\mu_{\rm had}) \cdot Z_{\rm A}/Z_{\rm P}(\mu_{\rm had})$: *l. Campos et al.* [1802.05243], including $Z_{\rm A}$ from *M. Dalla Brida et al.* [1808.09236]
- $(b_A b_P)$ and $Z = Z_m Z_P / Z_A$: *G. M. de Divitiis et al.* [1906.03445]
- $(r_{\rm m} 1) \propto \mathcal{O}(g_{\rm o}^4)$, non-perturbative determination has been started
- $(\overline{b}_{A} \overline{b}_{P}) \propto \mathcal{O}(g_{o}^{4})$, not known non-perturbatively

Renormalized quark mass

Compute the renormalized RGI charm quark mass from PCAC masses:

$$M_{c}^{\text{RGI}} = \frac{M}{\overline{m}(\mu_{\text{had}})} m_{cc,\text{R}}$$

$$\equiv Z_{\text{M}} m_{cc} \left[1 + \frac{(b_{\text{A}} - b_{\text{P}})}{Z} a m_{cc} - (b_{\text{A}} - b_{\text{P}})(r_{\text{m}} - 1) a \frac{\text{Tr}[M_{\text{q}}]}{N_{\text{f}}} + (\overline{b}_{\text{A}} - \overline{b}_{\text{P}}) a \text{Tr}[M_{\text{q}}] \right]$$

Reduce mass dependent cut-off effects via non-degenerate PCAC masses:

$$2m_{lc,R} - m_{ll,R} \equiv 2\frac{m_{c,R} + m_{l,R}}{2} - \frac{m_{l,R} + m_{l,R}}{2} = m_{c,R}$$

Charm quark mass: dependence on pion mass and coupling

Chiral and continuum extrapolation

Conclusions and outlook

- Distance preconditioning to reduce systematic uncertainties
- Preliminary extrapolations to the physical point
- Increase statistics
- Investigate finite volume effects
- Estimate systematics from different definitions
 e.g. ratio-difference method S. Dürr et al. [1011.2711]

Spare slides

From HQET we know: *M. Neubert* [hep-ph/9610266] $m_{\rm H} = m_{\rm q} + \bar{\Lambda} + \frac{1}{2m_{\rm q}} \left(-\lambda_1 + 2 \left[J(J+1) - \frac{3}{2} \right] \lambda_2 \right) + \mathcal{O}\left(1/m_{\rm q}^2 \right)$

Remove λ_2 via spin average and tame short-distance effects

$$M_{\rm X} = \frac{1}{4}(3m_{\rm V} + m_{\rm PS}) = m_{\rm q} + \bar{\Lambda} - \frac{\lambda_1}{m_{\rm c}}$$

▶ $Tr[M_q] = const. \rightarrow use flavor average$

$$\frac{1}{3}\left(2m_{\rm D}^{(*)}+m_{\rm D_s}^{(*)}\right)$$

1S spin-flavor-average

$$M = \frac{1}{12}(6m_{D^*} + 2m_D + 3m_{D_s^*} + m_{D_s})$$

Distance Preconditioning - vector mesons

Effective masses - light mesons on N200

Light mesons affected by open boundaries:

$$am_{\rm eff}(x_{\rm o}) = \log \frac{f_{\rm P}(x_{\rm o})}{f_{\rm P}(x_{\rm o}+a)}$$

= $am_{\rm PS}(1 + c_1 e^{E_1 x_{\rm o}} + c_2 e^{E_{2\rm PS}(T-x_{\rm o})} + \dots)$
 $E_1 = m' - m_{\rm PS}$ $E_{2\rm PS} \approx 2m_{\rm PS}$

M. Lüscher, S. Schaefer [1206.2809] M. Bruno, T. Korzec, S. Schaefer [1608.08900]

PCAC masses on N200 - light quarks

Mass corrections

- Constant sum of renormalized quark masses violated to $\mathcal{O}(a)$
- Chiral trajectory defined by

$$\phi_2 = 8t_0 m_\pi^2 \quad \phi_4 = 8t_0 \left(m_K^2 + \frac{1}{2} m_\pi^2 \right)$$

•
$$\phi_4^{\text{phys.}} = 1.11(2)$$
 M. Bruno, T. Korzec, S. Schaefer [1608.08900]

Shift observables to $\phi_4^{\text{phys.}}$ via Taylor expansion:

$$f(m') \rightarrow f(m) + (m - m') \frac{\mathrm{d}}{\mathrm{d}m} f(m)$$

Spin-flavor average

Spin-flavor average

