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The chirally rotated Schrödinger functional (χSF) with mass-
less Wilson fermions is a lattice regularization which endows
the Schrödinger functional (SF) with the property of automatic
O(a)-improvement. The χSF framework is effective in reduc-
ing lattice artefacts in correlation and step scaling functions, but
especially it offers new strategies to study and simplify the pat-
tern of renormalization. The price to pay for the automatic O(a)-
improvement is the nonperturbative tuning of coefficients of new
boundary counterterms. This tuning is the first phase of a long-
term project, aiming at the computation of BK low-energy con-
tributions BSM, with Wilson fermionNf = 2 + 1 lattice QCD in
a non-unitary (mixed-action) framework.

The χSF setup [1008.4857]
T = L = 1/µ

L

The fermion flavour doublet ψ =

(
ψu
ψd

)
satisfies b.c.’s

Q̃± ≡
1

2
(1± iγ0γ5τ

3)

{
Q̃+ψ(x)|x0=0 = 0 Q̃−ψ(x)|x0=T = 0

ψ̄(x)Q̃+|x0=0 = 0 ψ̄(x)Q̃−|x0=T = 0

in time and periodic ones in space. The fermion action is

Sf = a4
T∑

x0=0

∑
x

ψ̄(x)(DW + δDW + m0)ψ(x) ,

with DW the standard Wilson fermion matrix and the boundary
term

δDWψ(x) =
(
δx0,0 + δx0,T

) [(
zf − 1

)
+ (ds − 1) aDs

]
ψ(x) .

Performing the chiral flavour rotation

R = exp
(
i
α

2
γ5τ

3
)∣∣∣
α=π/2


ψ → ψ′ = Rψ

ψ̄ → ψ̄′ = ψ̄R

O[ψ, ψ̄] → Q[ψ, ψ̄] = O[Rψ, ψ̄R ]
we obtain the following universality relation for SF and χSF
correlation functions

〈OO〉cont
(SF)

= lim
a→0

[ZOZO 〈OO〉(SF) + O(a)]

= lim
a→0

[ZQZQ 〈QQ〉(χSF) + O(a2)] ,

where composite operators O,Q are defined in the bulk and
O,Q are defined on a time boundary. Note that χSF incorpo-
rates automatic O(a) improvement. The price to pay is the non-
perturbative tuning of the boundary counterterm coefficient zf .

Correlation functions [1808.09236]
We consider the set of fermion bilinear operators; e.g.

V
f1f2
µ (x) = ψf1(x)γµψf2(x), A

f1f2
µ (x) = ψf1(x)γµγ5ψf2(x),

with flavours f1, f2 ∈ {u, d, u′, d′}, and determine the χSF bulk-
to-boundary correlation functions

g
f1f2
X (x0) = −1

2

〈
Xf1f2(x)Qf2f15

〉
, X = V0, A0, S, P

l
f1f2
Y (x0) = −1

6

3∑
k=1

〈
Y
f1f2
k (x)Qf2f1k

〉
. Yk = Vk, Ak, Tk0, T̃k0

Up to discretization effects and boundary fields renormalization
they are related to the standard SF correlation functions fX and
kY by universality

f cont
A = ZAg

uu′
A = ZAg

dd′
A = −iZVg

ud
V = iZVg

du
V ,

f cont
V = ZVg

uu′
V = ZVg

dd′
V = −iZAg

ud
A = iZAg

du
A ,

kcont
V = ZVl

uu′
V = ZVl

dd′
V = −iZAl

ud
A = iZAl

du
A ,

kcont
A = ZAl

uu′
A = ZAl

dd′
A = −iZVl

ud
V = iZVl

du
V .

The SF correlation functions fA, kV are non-zero, while fV, kA,
being parity odd, are O(a). The local vector current can be re-
placed by the exactly conserved one Ṽµ(x) with normalization
Z

Ṽ
= 1. Therefore ZA may be obtained from the ratios

Z
g
A =

−igud
Ṽ

(x0)

guu
′

A (x0)

∣∣∣∣
x0=L/2

or ZlA =
iluu

′

Ṽ
(x0)

ludA (x0)

∣∣∣∣
x0=L/2

. (1)

Computational setup and results
We obtain results for Nf = 3 QCD in a non-unitary setup. Va-
lence quark propagators are inverted with χSF boundaries on
the configuration ensembles of [1802.05243], generated on
lattices with standard SF boundary conditions. These configura-
tions have been used for the RG-running of the quark mass in a
range of scales 2 . µ . 128 GeV, in the standard framework of
finite-size scaling L→ 2L.

ContinuumL
→

2L

Tuning
We must ensure that massless QCD with χSF boundary con-
ditions is correctly regularized. This is achieved by tuning the
bare mass parameterm0 to its critical value,mcr, where the axial
current is conserved, and by tuning the boundary counterterm
coefficient zf so that physical parity is restored. At present we
choose the conditions

m =
∂̃0f

ud
A (x0)

2fudP (x0)

∣∣∣∣
x0=L/2

= 0, mcr tuning ,

gudA (x0)

∣∣∣∣
x0=L/2

= 0 zf tuning . (2)

By requiring that eq. (2) be satisfied, zf is tuned for each en-
semble as shown in Fig. 1.
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Figure 1: Results of nonperturbative tuning of zf , according to eq. (2).

O(a)-improvement
Using eqs. (1) we obtain two estimates for ZA, which differ by
discretization errors

Z
g
A(β) = ZlA(β) + O(a2).
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Figure 2: Ratio of two different definitions of ZA (see eq. (1)) calculated
on our ensembles with 1/L = 4 GeV. The numerator and denominator differ
only by lattice artifacts and here we confirm that, after tuning zf , the ratio
scales as a2 and goes to 1 in the continuum.

Finally we study ZA(g2
0) over the full range of ensembles.
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Figure 3: ZA(g20) calculated across the full range of ensembles available.
A fit to the data matches onto the asympotic perturbative result in the limit
g20 → 0.

Outlook for 4 fermions [1605.09053]

Renormalization
Automatic O(a) improvement is especially valuable in simplify-
ing the renormalization of four fermion operators. They enter
the most general expression of the effective Hamiltonian which
describes flavour physics processes at low energy in the Stan-
dard Model (SM) and its extensions (BSM). Here we focus on
∆F = 2 transitions. The 4-quark operators with four distinct
flavours

O±XY ≡
1

2

[
(ψ1ΓXψ2)(ψ3ΓY ψ4)± (2↔ 4)

]
can be classified as parity even and parity odd:

O
e,±
k ∈

{
O±V V +AA, O

±
V V−AA, O

±
SS−PP , O

±
SS+PP , O

±
TT

}
,

O
o,±
k ∈

{
O±V A+AV , O

±
V A−AV , O

±
SP−PS, O

±
SP+PS, O

±
T T̃

}
.

Due to the explicit breaking of chiral symmetry of the Wilson
regularisation, the operators in general mix as follows:

O
e,±
i =

∑
j

Z
e,±
ij (δjm + ∆

e,±
jm )O

e,±
m ,

O
o,±
i =

∑
j

Z
o,±
ij (δjm +

�
�
�

�
��

∆
o,±
jm )O

o,±
m .

The parity-odd sector has a simpler, continuum-like mixing pat-
tern (∆o,±

jm = 0). Renormalization conditions are imposed on
parity odd operators by setting suitable renormalized correlation
functions equal to their tree level values at the scale µ = L−1.
In a standard SF setup parity conservation imposes the use of 4
point correlation functions; e.g.

Ti(x0) = 〈O′45
5 O

o,1234
i (x0)O21

5 O53
5 〉.

These are statistically noisy and suffer from O(a) discretisation
errors. The most convenient renormalization scheme is χSF, im-
posed on 3 point correlation functions; e.g

Gi(x0) = 〈Q′21
5 Q

o,1234
i (x0)Q43

5 〉.

They are statistically less noisy and automatically O(a) im-
proved.

SF χSF

Performing suitable chiral rotations, the χSF flavours are rotated
into the physical flavours. Thus we can map the renormalized
[Gi(x0)]R into the continuum correlation function

[Gi(x0)]R→ [Fi(x0)]R = 〈O′21
5 O

e,1234
i (x0)O43

5 〉cont.

Physical determinations
The renormalization program will be employed in the lat-
tice computation of the physical BK-parameter which con-
trols the K̄0 − K0 meson oscillations, towards a better un-
derstanding of the physics of CP violation. To accomo-
date physical meson states the configurations of Nf = 2 + 1
CLS ensembles are now characterised by large physical
volumes with open boundary conditions and by non-zero
quark masses [1411.3982],[1608.08900]. The sea
quarks are Wilson/Clover. Valence fermions are fully twisted
[1812.01474], with three flavours tuned at twisted angle
α = π/2 and the fourth one at α = −π/2. Unitarity is lost at
finite lattice spacing, but it is recovered in the continuum limit.
Performing distinct Osterwalder-Seiler chiral rotations for each
flavour, correlation functions with parity-odd operators (renor-
malized in the χSF scheme as described above) are mapped onto
the 3-point correlation functions of parity even operators with
pseudoscalar sources, from which the B-parameters are readily
extracted:

BKi(µ) ∝ 〈K̄0| [Oei (µ)]R |K0〉 .


