Investigating Rare Kaon Decays with the All-to-All Method.

Fionn Ó hÓgáin

Lattice 2019 Wuhan
The RBC & UKQCD collaborations

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

UC Boulder
Oliver Witzel

CERN
Mattia Bruno

Columbia University
Ryan Abbot
Norman Christ*
Duo Guo
Christopher Kelly
Bob Mawhinney
Masaaki Tomii
Jiqun Tu

University of Connecticut
Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

Edinburgh University
Peter Boyle
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tadeusz Janowski
Julia Kettle
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli*
Tobias Tsang
Andrew Yong
Azusa Yamaguchi

KEK
Julien Frison

University of Liverpool
Nicolas Garron

MIT
David Murphy

Peking University
Xu Feng*

University of Regensburg
Christoph Lehner (BNL)

University of Southampton
Nils Asmussen
Jonathan Flynn
Ryan Hill
Andreas Jüttner*
James Richings
Chris Sachrajda*

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

Outline

- $K \to \pi \ell^+ \ell^-$
- All-to-All method
- Exploratory 24^3 results
- Preliminary 48^3 results
- Future outlook & conclusions
$K \rightarrow \pi \ell^+ \ell^-$
Motivations

• $K \to \pi \ell^+ \ell^-$ are FCNC processes
• Forbidden at tree level
 \implies Sensitive to new physics

• Long distance effects dominate: use lattice QCD
• NA62 has collected $O(30k)$ $K \to \pi \mu^+ \mu^-$ samples
 • Potential for e^+e^- samples in 2021-2023 runs discussed at the Rare Kaon Decays Forum 2019 [C. Parkinson: RKF 2019]
In terms of EM transition form factor $V_j(z)$ \((j = +, S)\)

\[\mathcal{A}_\mu(q^2) = -iG_F \frac{V_j(z)}{(4\pi)^2} (q^2(k + p)_\mu - (M_K^2 - M_\pi^2)) \]

\[V_j(z) = a_j + b_j z + V_{j\pi\pi}(z), \quad z = \frac{q^2}{M_K^2}, \quad q \equiv k - p \]

Phenomenological predictions:

\[V. \text{Cirigliano et al. arXiv:1107.6001} \]

\[
\begin{array}{c|c|c|c}
\text{e} & |a_S| & a_+ & b_+ \\
\hline
\text{\mu} & |a_S| = 1.54^{+0.40}_{-0.32} & a_+ = -0.575 \pm 0.039 & b_+ = -0.813 \pm 0.145 \\
\end{array}
\]

NA62 working towards new a_+, b_+ measurements for the muon: [A. Sturgess: 2018 Thesis]
Long-Distance Minkowski amplitude:

\[A^j_\mu(q^2) = \int d^4 x \, \langle \pi^j(p) | T[J_\mu(0)H_W(x)] | K^j(k) \rangle \]

\[\Delta S = 1 \text{ effective weak Hamiltonian:} \]

\[H_W(x) = \frac{G_F}{\sqrt{2}} V_{us}^* V_{ud} \left(C_1 (Q^u_1 - Q^c_1) + C_2 (Q^u_2 - Q^c_2) \right) \]

Wilson coefficients \(C_1 \) and \(C_2 \) are much larger than \(C_3,...,8 \)

\[Q^q_1 = (\bar{s}_a \gamma^L_\mu d_a)(\bar{q}_b \gamma^L_\mu q_b) \quad \text{and} \quad Q^q_2 = (\bar{s}_a \gamma^L_\mu q_a)(\bar{q}_b \gamma^L_\mu d_b) \]

where \(\gamma^L_\mu = \gamma_\mu (1 - \gamma_5) \).

Current can be either the local or conserved lattice vector current.
• The Wick contractions for $K \rightarrow \pi H_W$ 3-pt functions gives:

- **W** (Wing)
- **C** (Connected)
- **S** (Saucer)
- **E** (Eye)

• Including the current insertions:
All-to-All Method
Eigenvectors of $D(x, y)$, λ_i and ϕ_i, are used to solve the low modes exactly. For a set of random noise source vectors that have the property:

\[
\lim_{N_h \to \infty} \sum_{h=1}^{N_h} \eta_h \eta_h^\dagger = 1
\]

and deflating the Dirac operator

\[
D^{-1}_{\text{defl}} = D^{-1} - \sum_{j=1}^{N_l} \frac{\phi_j \phi_j^\dagger}{\lambda_j}
\]

we can write

\[
D^{-1}_{\text{A2A}} = \sum_{i=1}^{N_l} \frac{\phi_i \phi_i^\dagger}{\lambda_i} + \sum_{h=1}^{N_h} D^{-1}_{\text{defl}} \eta_h \eta_h^\dagger
\]

All-to-all formalism has been implemented in the C++ library, “Grid,” and the framework based on Grid, “Hadrons.”

See Antonin Portelli’s talk (Wed 09:00).
The “all-to-all vectors” are defined as

\[v_i = \begin{cases}
\frac{1}{\lambda_i} \phi_i \\
D_{defl}^{-1} \eta_i
\end{cases} \quad w_i = \begin{cases}
\phi_i : 1 \leq i < N_l \\
\eta_i : N_l \leq i < N_l + N_h
\end{cases} \]

such that

- \(D_{A2A}^{-1}(x, y) = \sum_i v_i(x) w_i^{\dagger}(y) \)

We can now write the meson correlator functions as

- \(C(t) = \sum_{i,j} \Pi_{ji}^{(q',q)}(t_x; \Gamma_2) \Pi_{ij}^{(q,q')} (t_y; \Gamma_1) \)

where \(\Pi_{ij}^{(q,q')} (t_x; \Gamma) = \sum_{\vec{x}} w_i^{\dagger q}(x) \Gamma v_j^{q'}(x) \) are “Meson Fields.”

Arbitrary \(n \)-point functions can be made with appropriate MF multiplication and contraction. [J.Foley arXiv:hep-lat/0505023]
24^3 Tests
24^3 **Setup & $K \rightarrow \pi$ 3-pt Function**

$24^3 \times 64$ Domain Wall Fermion

- $M_\pi \approx 340 \text{MeV}$
- $a^{-1} = 1.78 \text{GeV}$
- 2 + 1 flavor
- Light quarks: 600 low modes
- Spin/color/time diluted high modes

Diagrams were found by computing contractions:

- $\mathcal{P}(x_H; t_y, \Gamma) = \sum_{i,j} v_i^{(q)}(x_H) \tilde{\Pi}_{ij}(t_y; \Gamma) v_j^\dagger(q')(x_H)$

where $\tilde{\Pi}(t_y; \Gamma)$ is some product of MFs.
All-to-All Current Insertion

Stochastic solves:
- All propagators treated in A2A fashion
- Noise on current insertion unavoidable

Sequential solves:
- Removes noise at current insertion
- No t_J translation \Rightarrow loss of statistics
Physical Point Runs
Physical Point Setup

$48^3 \times 96$ gauge configuration [T. Blum et al. arXiv:1411.7017]

- $M_\pi \approx 140$ MeV, $M_K \approx 500$ MeV
- $a^{-1} = 1.73 GeV$
- 2 + 1 flavor
- Scaled DWF action for strange quarks
- ZMöbius DWF action for light quarks
- 2000 low modes for light quarks \implies deflated solves
- Spin/color/time diluted high modes
- $p_K = (0, 0, 0)$, $p_\pi = \frac{2\pi}{L} (1, 0, 0)$
Physical Point Preliminary Results

- Same source/sink separation as exploratory 24^3 runs
- Local current insertions
- Coulomb gauge fixed wall sources

- With Wilson coefficients and quark charges
- Analysis: remove unphysical exponential terms and integrate over t_H
Future Outlook and Conclusions
\(N_t = 96 \) gives more leeway for source/sink separation

- Expected range already investigated

[P.A. Boyle et al. arXiv:1504.01692]

For Eye diagrams:

- Use A2A vector for the loops
- For loop divergence we can:
 - Compute charm quark loop & employ GIM mechanism
 - Calculate in 3-flavor theory & use NPR

For disconnected diagrams:

Same approach as James Richings’ QED talk (Wed 11:50)
Summary

• A2A vectors have been implemented in Grid, with modularization in Hadrons
• They are a powerful tool for approximating quark propagators
 • But they are not always appropriate to use for a full calculation
 • A2A propagators will be used to supplement the $K \rightarrow \pi \ell^+ \ell^-$ calculation
• Physical point simulations have already begun
 • Eye diagrams and more kinematics to follow
Thank you.
C. Parkinson: $K \rightarrow \pi \mu^+ \mu^-$ at NA62 - The 2nd Forum on Rare Kaon Decays 2019

G. D’Ambrosio et al.: The Decays $K \rightarrow \pi \ell^+ \ell^-$ beyond Leading Order in the Chiral Expansion - arXiv:hep-ph/9808289

A. Sturgess: Tracking Optimisation and the Measurement of $K \rightarrow \pi \mu^+ \mu^-$ at NA62 - Thesis (University of Birmingham)

Gino Isidori et al.,: Rare Kaon Decays on the Lattice - arXiv:hep-lat/0506026

J. Foley et al.,: Practical all-to-all propagators for lattice QCD - arXiv:hep-lat/0505023

T. Blum et al.: Domain wall QCD with physical quark masses - arXiv:1411.7017

P.A. Boyle et al.: The kaon semileptonic form factor in $N_f = 2 + 1$ domain wall lattice QCD with physical light quark masses - arXiv:1504.01692