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‣      world average is dominated by lattice determinations 
FLAG 2019:  
 
 
3.5% precision on  
 
 
with phenomenology determinations (PDG 16/18)  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‣      world average is dominated by lattice determinations 
FLAG 2019:  
 
 
3.5% precision on  
 
 
with phenomenology determinations (PDG 16/18)  
 
 

αs

α(5)
MS

(MZ) = 0.11823(81)

Λ(3)
MS

= 343(12)

α(5)
MS

(MZ) = 0.11806(72) , FLAG 19 + PDG 18 

α(5)
MS

(MZ) = 0.11660(100)

‣ determination from static potential (Bazavov et al, 2016)    
 
 
 similar cited precision, small tension                                    

‣ perturbative potential enters predictions of e+e-  
cross-section across t-tbar `threshold’  —> top quark mass at linear collider                                    
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    from static potential 

‣ Advantages

• 4-loop PT (4-loop beta-function) available, 
(normally only 3-loop)   

• relatively simple observable (no fermions …) 

‣ Disadvantages

• infrared divergences, starting at 4-loop,  
resummation with pNRQCD techniques 
 
or US - scale  

• T(loop) —> ∞ limit, noise 

• Discretisation errors at small r, window problem

α4+k [log(α)]k , k = 0,1,…

α(1/r) , α(μUS) , μUS ∼
CAα
2r

αs

Peter 97; Schröder 99
Anzai, Kiyo, Sumino, 10
Smirnov, Sminov, Steinhauser, 10 
Brambilla, Pineda, Soto, Vairo, 99  
Kniehl, Penin, 99  
Brambilla, Garcia i Tormo, Soto, Vairo, 07,09 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Pure Yang Mills 

‣ Precision, study of systematic effects

‣ Comparisons: two recent determinations of

• FlowQCD: 
converted  
(by us):  
 
from boosted coupling,  
contin. extrapolation                with   
perturbative uncertainty?  

• Dalla Brida and Ramos, 2019:  
 
NP step scaling down to 

ΛMS

w0 ΛMS = 0.2154(12)

8t0 ΛMS = 0.5968(33)

a2β → ∞

conversion is very precise

8t0 ΛMS = 0.6227(98)

αSF < 0.1
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Scales, lattices

a2[fm2]

‣ L/a=32, … 192,  L=2fm (big enough in YM),  
open BC (no topology freezing)

zoom

← 10−2 fm
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Strategy to get to small r (see also arXiv:1711.01860)

‣ basic scale from     : 
 
 
 
on ensembles with a >  0.02 fm

‣ Then step scaling functions 
 
 
 
with              including 

t0

αqq(μ, a2μ2) , μ = 1/r = (x 8t0)−1

Σ(u, a/r) = ḡ2
qq(sr)

ḡ2
qq(r)=u

a = {1.0, 1.4, 2.0} × 10−2 fms = 3/4
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‣ basic scale from     : 
 
 
 
on ensembles with a >  0.02 fm

‣ Then step scaling functions 
 
 
 
with              including 

t0

αqq(μ, a2μ2) , μ = 1/r = (x 8t0)−1

Σ(u, a/r) = ḡ2
qq(sr)

ḡ2
qq(r)=u

0.25 ≤ x ≤ 0.4

a = {1.0, 1.4, 2.0} × 10−2 fms = 3/4
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Plateaux

‣ 1-link integral

‣ GEVP with  
     3 trial wave-functions                     2 trial wave-functions 
    a=0.03 fm    r=0.24 fm                    a=0.01 fm    r=0.10 fm
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Force 

‣ Tree-level improved force,       such that   
 

‣ Tree-level improved force with        improved derivative:  
 
 
 
 
 
 
 
 

FTI(rI) =
1
a

[V(r + a) − V(r)] =
4
3

α
r2
I

+ O(α2)

a2

rI

2 Strategies

2.1 Basic scale of rc

2.2 Basic scale of t0

2.2.1 Above r = 0.1 fm RS: alphaqq r ov sqrtt0.m

We use ensembles sft1,...,sft5 for which we have t0/a2. On these we compute

↵qq(µ, a
2µ2) , µ = 1/r = (x

p
8t0)

�1 (1)

x 2 {0.4, 0.35, 0.325, 0.3, 0.275, 0.25} (2)

with t0/a2 from “WWC” discretisation. sft6,sft7 have not yet been used because t0/a2 is still
missing.

Because the GF is involved, the power of ↵(1/a) in the Symanzik prediction (below) is not
yet known and we extrapolate with straight a2, independently for each value of x.

From r = 0.25
p
8t0 on we use step scaling with steps s = 3/4.

3 Definitions, improvement

3.1 Improvement of the force

We start from the assumption that the theory is improved such that di↵erences of potentials
V (ra)�V (rb) are improved to a level that is irrelevant to us or that the corresponding a-e↵ects
are taken into account with a Symanzik analysis as discussed in the following subsection.

Here we deal with the definition of the force. We start from

FTI(rI) =
1
a [V (r + a)� V (r)] = 4

3
↵
r2I

+O(↵2) . (3)

The second equation defines rI and the function FTI(rI) is tree-level improved.
We also use

Fn(rn) =
1
a [V (r + a)� V (r)] = 1

a [V (rn + a/2)� V (rn � a/2)] , rn = r + a/2 . (4)

Assume that (di↵erences of) V (r) have no a-e↵ects. Then FTI(rI) will still have a-e↵ects at
higher order in ↵. These can be improved by an improved definition of the derivative,

Fimpr(rn) = 1
a

�
c1[V (rn + a/2)� V (rn � a/2)] + c2

3 [V (rn + 3a/2)� V (rn � 3a/2)]
 
, (5)

c1 =
9
8 , c2 = �1

8 . (6)

This choice is such that

Fimpr(rn) = Fcont(rn) + O((a/rn)
4) . (7)

Using

1
a [V (rn + 3a/2)� V (rn � 3a/2)] = Fn(rn + a) + Fn(rn) + Fn(rn � a) (8)

we also have

Fimpr(rn) =
13
12Fn(rn)� 1

24 [Fn(rn + a) + Fn(rn � a)] . (9)

Write rI as defined above as a function rI(r). Then defining

(r̃I)
�2 = 13

12(rI(r))
�2 � 1

24 [(rI(r + a))�2 + (rI(r � a))�2] (10)
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3
and therefore

Ai(r) = Āi↵(1/r)
1+�̂i [1 + O(↵(1/r)] . (19)

The fractional powers of ↵ appear due to the renormalization group improvement, resumming
the potentially large logarithms of a/r. These log’s are present in the ↵2 terms in eq. (3),
eq. (12).

What we have done above may be summarized as (an incomplete) matching of ↵qq(1/r, a)
in the full theory (i.e. the lattice expression eq. (12)) with the Symanzik EFT. Most e�ciently
this is done at the point a = r and then one runs with the known form of the EFT to a ⌧ r. In
this way one makes use of the fact that in perturbation theory, log’s and powers of a/r can be
dealt with independently.

3.4 Implementation: continuum extrapolations

The previous discussion suggests to perform continuum extrapolations of the step scaling func-
tions ⌃ in the form

⌃(↵, s, a/r) = �(↵, s) + (a/sr)2[↵(1/a)]7/11⇢(r, s) , (20)

with a parametrization of ⇢ which has the right asymptotics,

⇢(r)↵(1/r)�(2�7/11) = ⇢(0) + ⇢(1)↵(1/r) + . . . . (21)

This can be done by a global fit to a number of values of ↵ = ↵i, i = 1 . . . Ni.
Alternatively, for each ↵i we fit

⌃(↵i, s, a/r) = �i + (a/sr)2[↵(1/a)]7/11⇢i , (22)

for �i, ⇢i and then parametrize (i.e. fit again)

⇢i ↵
�(2�7/11)
i = ⇢(0) + ⇢(1)↵i + . . . (23)

with fit parameters ⇢(n).
Another option is to perform the first fit to the a-dependence jointly with both the data with

improved derivative and without. Of course with common �i but with distinct ⇢i.
In any case, we need the coupling ↵(1/a) = ↵qq(1/a, 0). This may consistently be estimated

as

↵qq(1/a, 0) = �(↵qq(a/s, 1/s), s) , s = a/rI(2.5a) ⇡ 1/2.5 , (24)

i.e. running from ↵qq at about 2.5 lattice spacings to r = a with the continuum step scaling
function. It is convenient to here use the perturbative �-function. The choice s ⇡ 1/2.5 uses
the smallest still ”reasonable” distance on the lattice.

5

smallest eigenvalue of 1-loop anomalous dimension matrix 
of Symanzik EFT d=6 operator basis [new,  talk by N. Husung]

αqq(1/r, a) = αqq(1/r,0){1 + (a /r)2 [α(1/a)]− ̂γ0 A1(r)[1 + O([α(1/a)]−Δ ̂γ)]} + O(a4)

− ̂γ0 = 7/11 = 0.686
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Continuum limits

‣ Large r region (r > 0.1fm)  

rsqrt8t0_0.4  x0.1r
8t0

= 0.4

αqq(r)
rsqrt8t0_0.25  x0.1r

8t0
= 0.25

αqq(r)

a2/r2 a2/r2

‣ Gradient flow: log-corrections to        not yet known.  a2
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Continuum limits
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Continuum limits

‣ Small r region (r < 0.1fm), step scaling functions 

(1) select                                            (qq-scheme)αi ∈ {0.205, 0.215, … , 0.5}
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Continuum limits

‣ Small r region (r < 0.1fm), step scaling functions 

(1) select                                            (qq-scheme)

(2) fit 

αi ∈ {0.205, 0.215, … , 0.5}

Σ(αi, s, a /r) = σi+(a /sr)2[α(1/a)]7/11ρi

α(1/a) from αqq(1/(2.5a)) by 4-loop running
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Continuum limits

‣ Small r region (r < 0.1fm), step scaling functions 

(1) select                                            (qq-scheme)

(2) fit 

(3) fit slopes to  
 

(4) use fitted slope function            in  
 
 
for all     in range 

αi ∈ {0.205, 0.215, … , 0.5}

Σ(αi, s, a /r) = σi+(a /sr)2[α(1/a)]7/11ρi

α(1/a) from αqq(1/(2.5a)) by 4-loop running

ρi = ρ(αi) , ρ(α) = α(2−7/11) × [ρ(0) + ρ(1)α+ρ(2)α2]

ρ(α)

Σ(α, s, a /r) = σ(α, s)+(a /sr)2[α(1/a)]7/11ρ(α)

α



Rainer Sommer | Lat19 | June 17

Continuum limits

(2) fit 
 

Σ(αi, s, a /r) = σi+(a /sr)2[α(1/a)]7/11ρi



Rainer Sommer | Lat19 | June 17

Continuum limits

‣ Small r region (r < 0.1fm), step scaling functions 

• select                                            (qq-scheme) 

• fit  

(3) fit slopes to  
 
 
 

αi ∈ {0.205, 0.215, … , 0.5}

Σ(αi, s, a /r) = σi+(a /sr)2[α(1/a)]7/11ρi α(1/a) from αqq(1/(2.5a)) by 4-loop running

ρi = ρ(αi) , ρ(α) = α(2−7/11) × [ρ(0) + ρ(1)α+ρ(2)α2]
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Continuum limits

(4) fit 
 

Σ(αi, s, a /r) = σi+(a /sr)2[α(1/a)]7/11ρ(αi)
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Continuum limits

(4) fit 
 

Σ(αi, s, a /r) = σi+(a /sr)2[α(1/a)]7/11ρ(αi)

fitting           first has a stabilizing effect  
       — seems good for means 
       — but trustworthy for error bars?

ρ(α)
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Continuum limits: compare to standard derivative

     improved derivative standard derivativea2

more points,
but lost
by cut

same 
continuum
limits

( a
sr )

2

≤ 0.08

( s r
a

> 3.5 )

(          )γ0 = 0
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Continuum limits: compare to standard derivative

     improved derivative standard derivativea2

more points,
but lost
by cut

same 
continuum
limits

( a
sr )

2

≤ 0.08

( s r
a

> 3.5 )

a bit crazy  
but not impossible

(          )γ0 = 0
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Results (from 2-stage continuum limit, improved derivative)
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𝚲 - parameter 

‣          from         locally (       by      ) ΛMS Λqq αqq αqq

Λ = μ (b0g(μ)2)−b1/(2b2
0) e−1/(2b0g(μ)2) exp −∫

g(μ)

0
dx [ 1

βn−loop(x)
+

1
b0x3

−
b1

b2
0 x ]

× [1 + O(g(μ)2(n−1))]

β3−loop(g) = − g3 [ b0 + b1g2 + b2g4]

4-loop:  +b3g6 + b3Lg6 log(α)
4-loop LL:  +b4Lg8log(α)+b4LLg8[log(α)]2

computed from

Peter 97; Schröder 99
Anzai, Kiyo, Sumino, 10
Smirnov, Sminov, Steinhauser, 10 
Brambilla, Pineda, Soto, Vairo, 99  
Kniehl, Penin, 99  
Brambilla, Garcia i Tormo, Soto, Vairo, 07,09 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Results (from 2-stage continuum limit, standard derivative)

ρ(α) = α2 × [ρ(0) + ρ(1)α+ρ(2)α2]
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Results (from 2-stage continuum limit, standard derivative)

ρ(α) = α2 × [ρ(0) + ρ(1)α+ρ(2)α2]

irritatingly flat 
at wrong position
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Results (from 2-stage continuum limit, standard derivative)

ρ(α) = α2 × [ρ(0) + ρ(1)α+ρ(2)α2]
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Results (from 2-stage continuum limit, standard derivative)

ρ(α) = α2 × [ρ(0) + ρ(1)α]
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Results (from 2-stage continuum limit, standard derivative)

ρ(α) = α2 × [ρ(0) + ρ(1)α]

look at ssf again
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Continuum limits: compare to standard derivative

     improved derivativea2

standard derivative

γ0 = 7/11

γ0 = 0
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Continuum limits: compare to standard derivative

     improved derivativea2

standard derivative

conclusion: 
PT fails

conclusion: 
PT works

γ0 = 7/11

γ0 = 0
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Continuum limits: compare to standard derivative

     improved derivativea2

standard derivative

cut of 0.12
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Conclusions

‣ Continuum limit with known leading first log-correction to       scaling  
 

‣ Semiquantitative agreement with perturbation theory is 
convincing for distances below 0.1 fm 

‣ Precision test of PT is very difficult

• do known US contributions apply / help for accessible     ? 

• can continuum limit be controlled sufficiently well? 

• uncertainty in      very difficult to assess even with a=0.01 fm lattice

a2

a2 [α(1/a)]7/11

α

Λ
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Conclusions

• uncertainty in Lambda very difficult to assess even with  
a=0.01 fm lattice

7% difference from combination of                             ? α → 0 and a → 0
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Conclusions

• uncertainty in Lambda very difficult to assess even with  
a=0.01 fm lattice

7% difference from combination of                             ? α → 0 and a → 0



Thank you




