Yang Mills short distance potential and perturbation theory

Nikolai Husung, Philipp Krah, Alessandro Nada Rainer Sommer

John von Neumann Institute for Computing, DESY \&

Humboldt University, Berlin

Wuhan, Lattice 2019, June 17

ASSOCIATION

Motivation

Motivation

- α_{s} world average is dominated by lattice determinations FLAG 2019:

$$
\alpha_{\frac{\mathrm{MS}}{(5)}}\left(M_{Z}\right)=0.11823(81)
$$

3.5% precision on

$$
\Lambda \frac{(3)}{\mathrm{MS}}=343(12)
$$

with phenomenology determinations (PDG 16/18)

$$
\alpha_{\overline{\mathrm{MS}}}^{(5)}\left(M_{Z}\right)=0.11806(72), \quad \text { FLAG } 19+\text { PDG } 18
$$

Motivation

- α_{s} world average is dominated by lattice determinations FLAG 2019:

$$
\alpha_{\frac{\mathrm{MS}}{(5)}}\left(M_{Z}\right)=0.11823(81)
$$

3.5% precision on

$$
\Lambda \frac{(3)}{\mathrm{MS}}=343(12)
$$

with phenomenology determinations (PDG 16/18)

$$
\alpha_{\overline{\mathrm{MS}}}^{(5)}\left(M_{Z}\right)=0.11806(72), \quad \text { FLAG } 19+\text { PDG } 18
$$

- determination from static potential (Bazavov et al, 2016)

$$
\alpha_{\overline{\mathrm{MS}}}^{(5)}\left(M_{Z}\right)=0.11660(100)
$$

similar cited precision, small tension

Motivation

- α_{s} world average is dominated by lattice determinations FLAG 2019:

$$
\alpha_{\frac{\mathrm{MS}}{(5)}}\left(M_{Z}\right)=0.11823(81)
$$

3.5% precision on

$$
\Lambda \frac{(3)}{\mathrm{MS}}=343(12)
$$

with phenomenology determinations (PDG 16/18)

$$
\alpha_{\overline{\mathrm{MS}}}^{(5)}\left(M_{Z}\right)=0.11806(72), \quad \text { FLAG } 19+\text { PDG } 18
$$

- determination from static potential (Bazavov et al, 2016)

$$
\alpha_{\overline{\mathrm{MS}}}^{(5)}\left(M_{Z}\right)=0.11660(100)
$$

similar cited precision, small tension

- perturbative potential enters predictions of e+e-cross-section across t-tbar `threshold' \rightarrow top quark mass at linear collider

α_{s} from static potential

- Advantages

- 4-loop PT (4-loop beta-function) available, (normally only 3-loop)
- relatively simple observable (no fermions ...)

Peter 97; Schröder 99
Anzai, Kiyo, Sumino, 10
Smirnov, Sminov, Steinhauser, 10
Brambilla, Pineda, Soto, Vairo, 99
Kniehl, Penin, 99
Brambilla, Garcia i Tormo, Soto, Vairo, 07,09

- Disadvantages
- infrared divergences, starting at 4-loop, resummation with pNRQCD techniques $\quad \alpha^{4+k}[\log (\alpha)]^{k}, \quad k=0,1, \ldots$
or US - scale $\quad \alpha(1 / r), \alpha\left(\mu_{\mathrm{US}}\right), \quad \mu_{\mathrm{US}} \sim \frac{C_{\mathrm{A}} \alpha}{2 r}$
- T (loop) $->\infty$ limit, noise
- Discretisation errors at small r, window problem

Pure Yang Mills

- Precision, study of systematic effects
- Comparisons: two recent determinations of $\Lambda_{\overline{\mathrm{MS}}}$
- FlowQCD: $w_{0} \Lambda_{\overline{\mathrm{MS}}}=0.2154(12)$ converted (by us): $\quad \sqrt{8 t_{0}} \Lambda_{\overline{\mathrm{MS}}}=0.5968$ (33) from boosted coupling, contin. extrapolation $\beta \rightarrow \infty$ with a^{2}
conversion is very precise
 perturbative uncertainty?
- Dalla Brida and Ramos, 2019: $\quad \sqrt{8 t_{0}} \Lambda_{\overline{\mathrm{MS}}}=0.6227(98)$ NP step scaling down to $\alpha_{\text {SF }}<0.1$

Scales, lattices

- L/a=32, ... 192, L=2fm (big enough in YM), open BC (no topology freezing)

Strategy to get to small r (see also arXiv:1711.01860)

- basic scale from t_{0} :

$$
\alpha_{\mathrm{qq}}\left(\mu, a^{2} \mu^{2}\right), \quad \mu=1 / r=\left(x \sqrt{8 t_{0}}\right)^{-1}
$$

on ensembles with $a>0.02 \mathrm{fm}$

- Then step scaling functions

$$
\Sigma(u, a / r)=\left.\bar{g}_{\mathrm{qq}}^{2}(s r)\right|_{\bar{g}_{\mathrm{qq}}^{2}(r)=u}
$$

with $s=3 / 4$ including $a=\{1.0,1.4,2.0\} \times 10^{-2} \mathrm{fm}$

Strategy to get to small r (see also arXiv:1711.01860)

- basic scale from t_{0} :

$$
\alpha_{\mathrm{qq}}\left(\mu, a^{2} \mu^{2}\right), \quad \mu=1 / r=\left(x \sqrt{8 t_{0}}\right)^{-1}
$$

on ensembles with $a>0.02 \mathrm{fm}$

$$
0.25 \leq x \leq 0.4
$$

- Then step scaling functions

$$
\Sigma(u, a / r)=\left.\bar{g}_{\mathrm{qq}}^{2}(s r)\right|_{\bar{g}_{\mathrm{qq}}^{2}(r)=u}
$$

with $s=3 / 4$ including $a=\{1.0,1.4,2.0\} \times 10^{-2} \mathrm{fm}$

Plateaux

- 1-link integral
- GEVP with

3 trial wave-functions $a=0.03 \mathrm{fm} \quad r=0.24 \mathrm{fm}$

2 trial wave-functions $a=0.01 \mathrm{fm} \quad \mathrm{r}=0.10 \mathrm{fm}$

Force

- Tree-level improved force, r_{I} such that

$$
F_{\mathrm{TI}}\left(r_{\mathrm{I}}\right)=\frac{1}{a}[V(r+a)-V(r)]=\frac{4}{3} \frac{\alpha}{r_{\mathrm{T}}^{2}}+\mathrm{O}\left(\alpha^{2}\right)
$$

- Tree-level improved force with a^{2} improved derivative:

$$
\begin{gathered}
F_{\mathrm{n}}\left(r_{\mathrm{n}}\right)=\frac{1}{a}[V(r+a)-V(r)]=\frac{1}{a}\left[V\left(r_{\mathrm{n}}+a / 2\right)-V\left(r_{\mathrm{n}}-a / 2\right)\right], \quad r_{\mathrm{n}}=r+a / 2 \\
F_{\mathrm{impr}}\left(r_{\mathrm{n}}\right)=\frac{13}{12} F_{\mathrm{n}}\left(r_{\mathrm{n}}\right)-\frac{1}{24}\left[F_{\mathrm{n}}\left(r_{\mathrm{n}}+a\right)+F_{\mathrm{n}}\left(r_{\mathrm{n}}-a\right)\right] \\
\left(\tilde{r}_{\mathrm{I}}\right)^{-2}=\frac{13}{12}\left(r_{\mathrm{I}}(r)\right)^{-2}-\frac{1}{24}\left[\left(r_{\mathrm{I}}(r+a)\right)^{-2}+\left(r_{\mathrm{I}}(r-a)\right)^{-2}\right] \\
\alpha_{\mathrm{qq}}(1 / r, a)=\alpha_{\mathrm{qq}}(1 / r, 0)\left\{1+(a / r)^{2}[\alpha(1 / a)]^{-\hat{\gamma}_{0}} A_{1}(r)\left[1+\mathrm{O}\left([\alpha(1 / a)]^{-\Delta \hat{\gamma}}\right)\right]\right\}+\mathrm{O}\left(a^{4}\right) \\
A_{i}(r)=\bar{A}_{i} \alpha(1 / r)^{1+\hat{\gamma}_{i}}[1+\mathrm{O}(\alpha(1 / r)] . \\
\text { Smallest eigenvalue of 1-loop anomalous dimension matrix } \\
\text { of Symanzik EFT d=6 operator basis [new, talk by N. Husung] } \\
\text { Rainer Sommer | Lat19 | June 17 }
\end{gathered}
$$

Continuum limits

- Large r region ($r>0.1 \mathrm{fm}$)

- Gradient flow: log-corrections to a^{2} not yet known.

Continuum limits

Continuum limits

- Small r region ($r<0.1 \mathrm{fm}$), step scaling functions
(1) select $\alpha_{i} \in\{0.205,0.215, \ldots, 0.5\} \quad$ (qq-scheme)

Continuum limits

- Small r region ($r<0.1 \mathrm{fm}$), step scaling functions
(1) select $\alpha_{i} \in\{0.205,0.215, \ldots, 0.5\}$ (qq-scheme)
(2) fit $\quad \Sigma\left(\alpha_{i}, s, a / r\right)=\sigma_{i}+(a / s r)^{2}[\alpha(1 / a)]^{7 / 11} \rho_{i}$
$\alpha(1 / a)$ from $\alpha_{\text {qq }}(1 /(2.5 a))$ by 4-loop running

Continuum limits

- Small r region ($r<0.1 \mathrm{fm}$), step scaling functions
(1) select $\alpha_{i} \in\{0.205,0.215, \ldots, 0.5\}$ (qq-scheme)
(2) fit $\quad \Sigma\left(\alpha_{i}, s, a / r\right)=\sigma_{i}+(a / s r)^{2}[\alpha(1 / a)]^{7 / 11} \rho_{i}$
$\alpha(1 / a)$ from $\alpha_{\mathrm{qq}}(1 /(2.5 a))$ by 4-loop running
(3) fit slopes to

$$
\rho_{i}=\rho\left(\alpha_{i}\right), \quad \rho(\alpha)=\alpha^{(2-7 / 11)} \times\left[\rho^{(0)}+\rho^{(1)} \alpha+\rho^{(2)} \alpha^{2}\right]
$$

(4) use fitted slope function $\rho(\alpha)$ in

$$
\Sigma(\alpha, s, a / r)=\sigma(\alpha, s)+(a / s r)^{2}[\alpha(1 / a)]^{7 / 11} \rho(\alpha)
$$

for all α in range

Continuum limits

(2) fit $\Sigma\left(\alpha_{i}, s, a / r\right)=\sigma_{i}+(a / s r)^{2}[\alpha(1 / a)]^{7 / 11} \rho_{i}$

Rainer Sommer | Lat19 | June 17

Continuum limits

- Small r region $(r<0.1 f m)$, step scaling functions
- select $\alpha_{i} \in\{0.205,0.215, \ldots, 0.5\} \quad$ (qq-scheme)
- fit $\Sigma\left(\alpha_{i}, s, a / r\right)=\sigma_{i}+(a / s r)^{2}[\alpha(1 / a)]^{7 / 11} \rho_{i}$
$\alpha(1 / a)$ from $\alpha_{\mathrm{qq}}(1 /(2.5 a))$ by 4-loop running
(3) fit slopes t $\varphi_{i}=\rho\left(\alpha_{i}\right), \quad \rho(\alpha)=\alpha^{(2-7 / 11)} \times\left[\rho^{(0)}+\rho^{(1)} \alpha+\rho^{(2)} \alpha^{2}\right]$

Continuum limits

(4) fit $\Sigma\left(\alpha_{i}, s, a / r\right)=\sigma_{i}+(a / s r)^{2}[\alpha(1 / a)]^{7 / 11} \rho\left(\alpha_{i}\right)$

Continuum limits

(4) fit $\Sigma\left(\alpha_{i}, s, a / r\right)=\sigma_{i}+(a / s r)^{2}[\alpha(1 / a)]^{7 / 11} \rho\left(\alpha_{i}\right)$

> fitting first has a stabilizing effect - seems good for means - but trustworthy for error bars?

Continuum limits: compare to standard derivative

a^{2} improved derivative

standard derivative

$$
\left(\gamma_{0}=0\right)
$$

more points, but lost by cut

$$
\begin{aligned}
& \left(\frac{a}{s r}\right)^{2} \leq 0.08 \\
& \left(\frac{s r}{a}>3.5\right)
\end{aligned}
$$

same continuum limits

Continuum limits: compare to standard derivative

a^{2} improved derivative

standard derivative

$$
\left(\gamma_{0}=0\right)
$$

more points, but lost by cut

$$
\begin{aligned}
& \left(\frac{a}{s r}\right)^{2} \leq 0.08 \\
& \left(\frac{s r}{a}>3.5\right)
\end{aligned}
$$

same
continuum limits

Results (from 2-stage continuum limit, improved derivative)

NIC

Λ - parameter

- $\Lambda_{\overline{\mathrm{MS}}}$ from Λ_{qq} locally (α_{qq} by α_{qq})

$$
\begin{aligned}
& \Lambda=\mu\left(b_{0} \bar{g}(\mu)^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} \bar{g}(\mu)^{2}\right)} \exp \left\{-\int_{0}^{\bar{g}(\mu)} \mathrm{d} x\left[\frac{1}{\beta_{\mathrm{n}-\text { loop }}(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\} \\
& \times\left[1+\mathrm{O}\left(\bar{g}(\mu)^{2(n-1)}\right)\right] \\
& \beta_{3 \text {-loop }}(g)=-g^{3}\left[b_{0}+b_{1} g^{2}+b_{2} g^{4}\right] \\
& \text { 4-loop: } \quad+b_{3} g^{6}+b_{3 \mathrm{~L}} g^{6} \log (\alpha) \\
& \text { 4-loop LL: } \quad+b_{4 \mathrm{~L}} g^{8} \log (\alpha)+b_{4 \mathrm{LL}} g^{8}[\log (\alpha)]^{2} \\
& \text { computed from } \\
& \text { Peter 97; Schröder } 99 \\
& \text { Anzai, Kiyo, Sumino, } 10 \\
& \text { Smirnov, Sminov, Steinhauser, } 10 \\
& \text { Brambilla, Pineda, Soto, Vairo, } 99 \\
& \text { Kniehl, Penin, } 99 \\
& \text { Brambilla, Garcia i Tormo, Soto, Vairo, 07,09 }
\end{aligned}
$$

Results (from 2-stage continuum limit, standard derivative)

NIC
kaıner sommer | Lat ıy | June I/

Results (from 2-stage continuum limit, standard derivative)

Results (from 2-stage continuum limit, standard derivative)

Results (from 2-stage continuum limit, standard derivative)

NIC
kaıner sommer | Lat Iy | June ।/

Results (from 2-stage continuum limit, standard derivative)

NIC
Kaıner sommer | Lat Iy | June ।/

Results (from 2-stage continuum limit, standard derivative)

NIC

Continuum limits: compare to standard derivative

a^{2} improved derivative

standard derivative

Continuum limits：compare to standard derivative

a^{2} improved derivative

－マロー

Sigmaextrap cut 0.02

$\gamma_{0}=0$

Continuum limits: compare to standard derivative

Continuum limits：compare to standard derivative

a^{2} improved derivative

standard derivative

Conclusions

- Continuum limit with known leading first log-correction to a^{2} scaling

$$
a^{2}[\alpha(1 / a)]^{7 / 11}
$$

- Semiquantitative agreement with perturbation theory is convincing for distances below 0.1 fm
- Precision test of PT is very difficult
- do known US contributions apply / help for accessible α ?
- can continuum limit be controlled sufficiently well?
- uncertainty in Λ very difficult to assess even with $\mathrm{a}=0.01 \mathrm{fm}$ lattice

Conclusions

- uncertainty in Lambda very difficult to assess even with $a=0.01 \mathrm{fm}$ lattice

7% difference from combination of $\alpha \rightarrow 0$ and $a \rightarrow 0$?

Conclusions

- uncertainty in Lambda very difficult to assess even with $a=0.01 \mathrm{fm}$ lattice

Thank you

