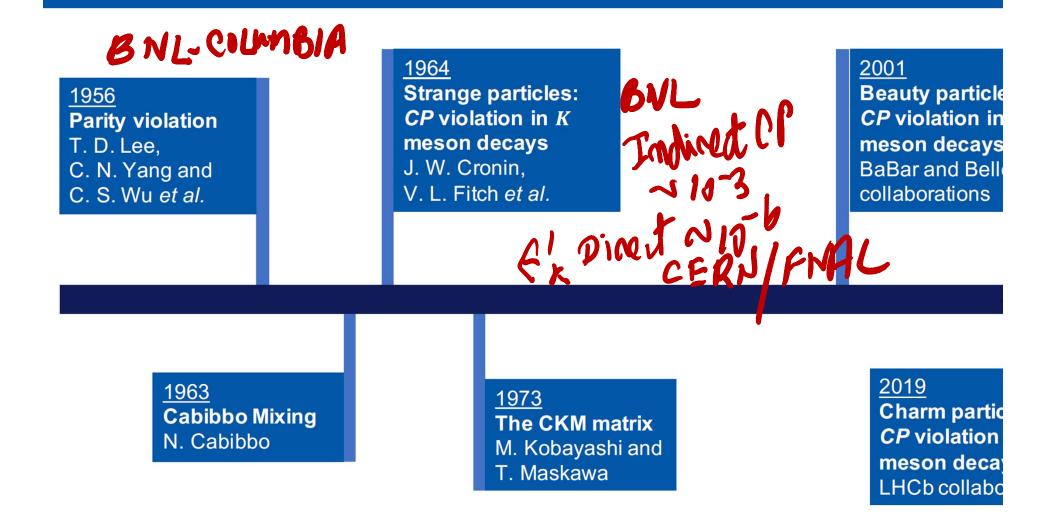
Charm CP & the lattice **Amarjit Soni HET-BNL** Sorry NO flattice data yet; Just some initial Lattice 2019 Wuhan, China 06/21/19

Outline

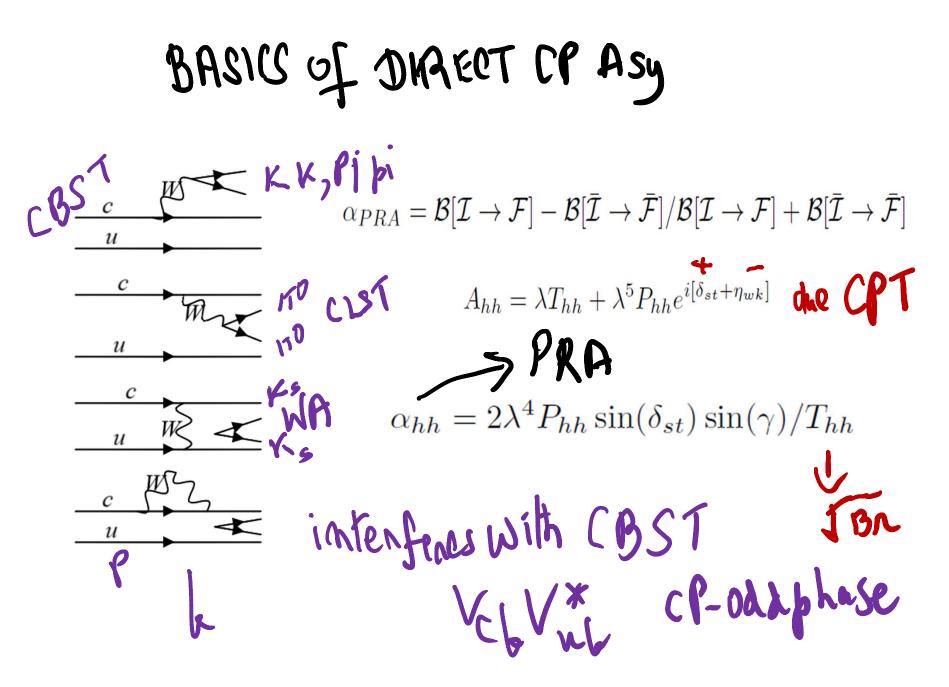
- Recently, LHCb exciting obs of ΔACP FUMmind March²
 Natural pass recently in the second secon
- Naturalness reasoning strongly suggests other BSM-CP phase(s) must exist. To Ais cern Computations essential
- CPV represents an imp. avenue for searching new pheno but precise calculations are highly desirable
- Crude estimate of $\triangle ACP$ $\rightarrow 1905.00907$
- Propose a specific mechanism for understanding ΔACP
- This mechanism points to new lattice difficulties for addressing ΔACP
- Suggest mode for precision testing the SM-CKM
- Lattice feasibility
- Summary + Outlook

$$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$
Results
$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 (\text{stat.}) \pm 0.9 (\text{syst.})] \times 10^{-4}$$


$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 (\text{stat.}) \pm 5 (\text{syst.})] \times 10^{-4}$$
• Compatible with previous LHCb results and the WA
• Combination with LHCb Run 1 gives:

F. Betti - INFN Bologna, University of Bologna

Moriond EW 2019 - 21/03/2019


Lattice-2019; soni-BNL-HET

CP violation history

Alas, we cannot compute!

- Sadly calculations of Direct CP remain a challenge for theory; we are not able to calculate with any precision [eps' an exception as a result of over 3 decades of concerted lattice effort]. As a rule, we can just give crude (QCD) model-dependent estimates..
- Essential ingredient is CP-conserving scattering phases & usually complicated non-perturbative effect on weak decays....difficult for the lattice in general

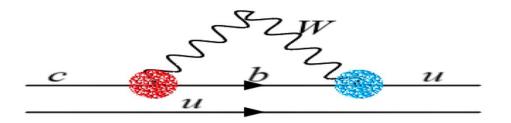
CRUDE ESTIMATE

Aseckm 2018 SM expectation...DCP

- Dir CP..... See Bander, Silverman + AS, PRL 1979 for DCP when mm- bartwate >> lamda_QCD...anticipato large ۰ mq >> lamda_QCD...anticipate large corrections for charm from s-quark[K-decays]
- Key points: Penguin-Tree interference; SCS modes......Hall mark of BSS'79
- **Need suitable simple changes** SM-dominant CKM phase either in Vub or N Vtd ٠
- For charm decays relevant is Vub •

Lattice-2019; soni-BNL-HET

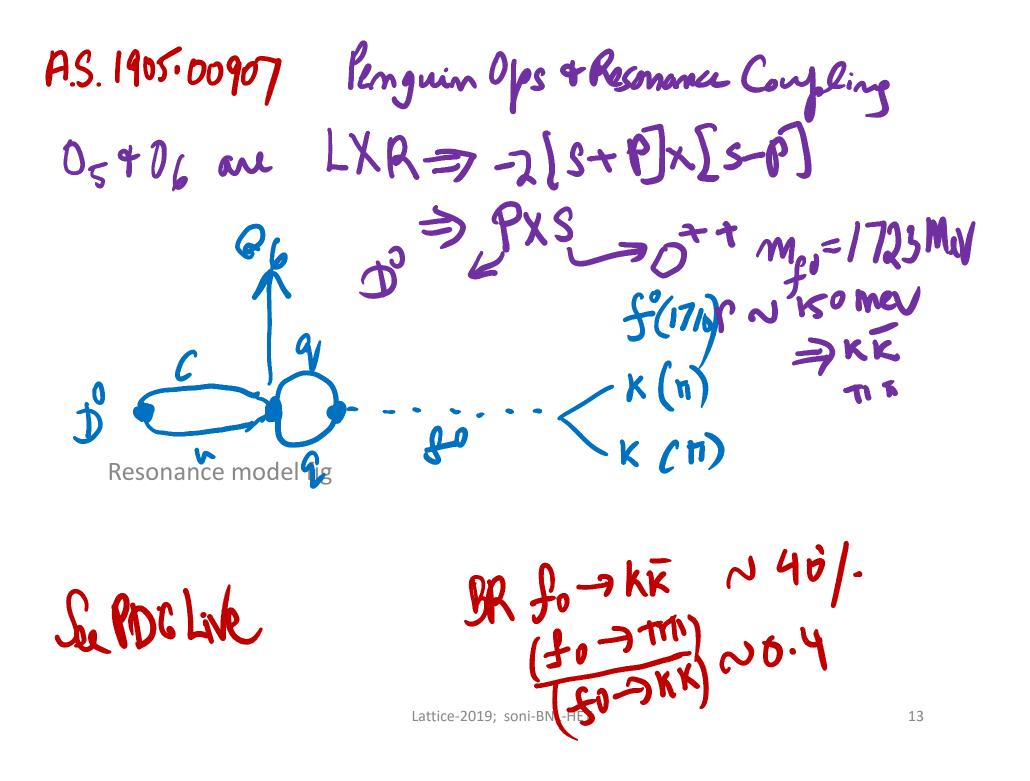
Lattice difficulties for **ΔACP**


- mD~1.865 GeV; Br [D=> K^+ K^-] ~0.4%
 much larger Br to multiparticle states...difficult on the lattice....see Hansen and Sharpe, PRD'12.
- However, strictly speaking ΔACP requires only difference between KK and pipi states.
- Therefore, optimistically, one may hope for appreciable cancellation between multiparticle states; i.e U-spin or SU(3) may provide a basis for such a cancellation.
- But unlikely to be viable as will be explained.

Interplay with resonances

- Charm region has many resonances
- Resonances that have appreciable Br to KK & pi pi are relevant
- In particular (ps) scalar resonances
- These can enter the weak decay dynamics via the penguin H_eff

b-penguin


• b-penguin fig

Penguin Hamiltonian

- Since mb>>Lambda_QCD, we can integrate it out along with W and get the familiar, H_eff:
- Heff = Ci Oi

$$\begin{split} & \mathfrak{O}_{3} = (\overline{c}_{\alpha}u_{\alpha})_{V-A} [(\overline{u}_{\beta}u_{\beta})_{V-A} + (\overline{d}_{\beta}d_{\beta})_{V-A} + (\overline{s}_{\beta}s_{\beta})_{V-A} + (\overline{c}_{\beta}c_{\beta})_{V-A}], \\ & \mathfrak{O}_{4} = (\overline{c}_{\alpha}u_{\beta})_{V-A} [(\overline{u}_{\beta}u_{\alpha})_{V-A} + (\overline{d}_{\beta}d_{\alpha})_{V-A} + (\overline{s}_{\beta}s_{\alpha})_{V-A} + (\overline{c}_{\beta}c_{\alpha})_{V-A}], \\ & \mathfrak{O}_{5} = (\overline{c}_{\alpha}u_{\alpha})_{V-A} [(\overline{u}_{\beta}u_{\beta})_{V-A} + (\overline{d}_{\beta}d_{\beta})_{V+A} + (\overline{s}_{\beta}s_{\beta})_{V+A} + (\overline{c}_{\beta}c_{\beta})_{V+A}], \\ & \mathfrak{O}_{6} = (\overline{c}_{\alpha}u_{\beta})_{V-A} [(\overline{u}_{\beta}u_{\alpha})_{V+A} + (\overline{d}_{\beta}d_{\alpha})_{V+A} + (\overline{s}_{\beta}s_{\alpha})_{V+A} + (\overline{c}_{\beta}c_{\alpha})_{V+A}], \\ & See Albert, Si Kivie, Wise & & j Goldmant Grivitein & \\ & Shihala, Buros, Lautenbacker & \\ & Burhala, Buros, Lautenbacker & \\ & Burhala, Buros, Lautenbacker & \\ & Burhala & Buros, Lautenbacker & \\ & \end{array}$$

S,P Glueballs & their SU3 breakings

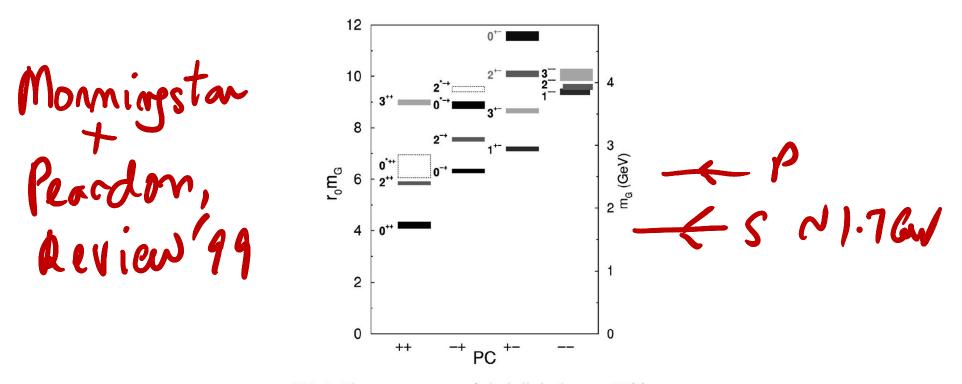
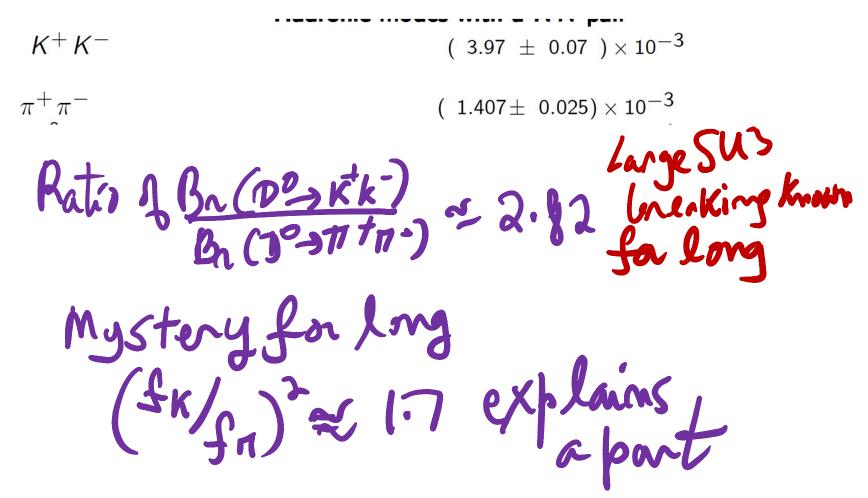



FIG. 8. The mass spectrum of glueballs in the pure SU(3) gauge theory. The masses are given in terms of the hadronic scale r_0 along the left vertical axis and in terms of GeV along the right vertical axis (assuming r_0^{-1} =410 MeV). The mass uncertainties indicated by the vertical extents of the boxes do *not* include the uncertainty in setting r_0 . The locations of states whose interpretation requires further study are indicated by the dashed open boxes.

PDG gives Br's of D0

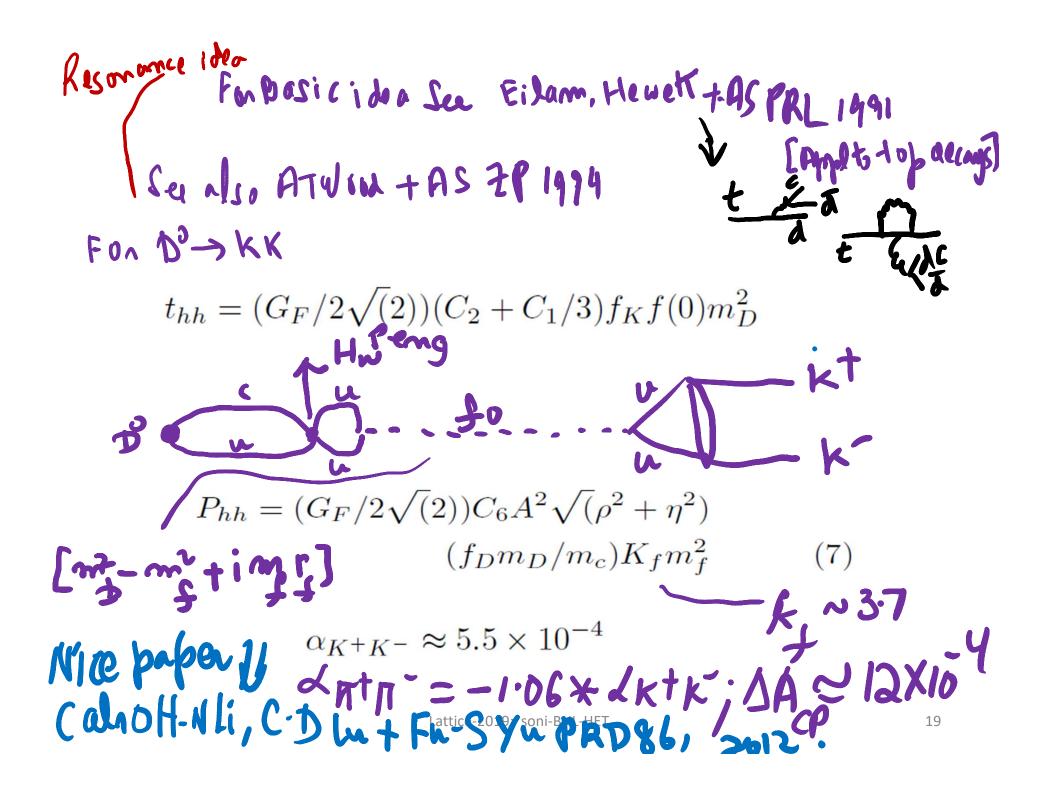
Lattice-2019; soni-BNL-HET

New understanding of an old issue Comwall+AS, PRD '84

$$\mathcal{L}_{eff} = -\bar{\psi}(G_{S}S + i\gamma_{5}G_{P}P)\psi + \cdots, \qquad (3.2)$$

$$G_{S} = \frac{M_{Q}}{2\langle S \rangle} \qquad \begin{array}{c} Couplings \ to \\ quarks a \end{array}$$

f0 decay to KK & pi pi


- PDG live gives
- Br [f0 => pi+ + pi-]/Br[f0 => K+ + K-] ~ 0.4

enhancing the SU3 breaking decays of the D0

Imp implication of Resonances for CP

WHEN DEALING WITH FINAL STATES THAT ARE DOMINATED BY RESONANCES, THEN THE WIDTH OF THE RESONANCE PROVIDES THE "STRONG"-CP-EVEN PHASE NEEDED FOR COMPUTING PRA...1ST ILLUSTRATED BY EILAM, HEWETT + AS, PRL'91

Interplay of CPT & resonant CP

Because of the CPT constraint that life-time of particle must equal to that of its antiparticle, we must have,

$$\sum_{X} \Delta \Gamma(X) = 0 \tag{9}$$

where X are the various final states that emerge from the decays of D^0 and

 $\Delta \Gamma(X) = \Gamma(D^0 \to X) - \Gamma(\overline{D}^0 \to \overline{X})$

Since at the quark level in charm decays there are only two channels, $c \rightarrow u\bar{d}d$ and $c \rightarrow u\bar{s}s$, this means because of CPT we must have [20, 21],

$$\Delta\Gamma(c \to u\bar{d}d) = -\Delta\Gamma(c \to u\bar{s}s) \tag{10}$$

At the meson level, it is suggested [20] that this materializes into,

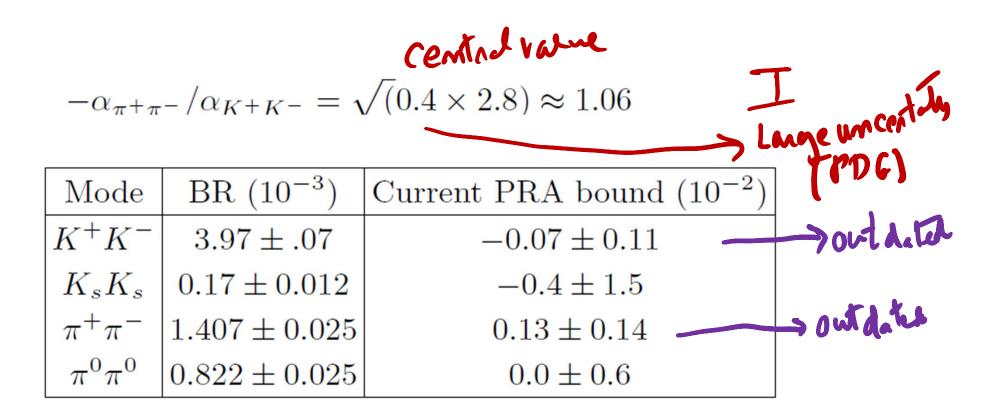
$$\Delta\Gamma(\pi^+\pi^-) = -\Delta\Gamma(K^+K^-) \tag{11}$$

Using the tree dominance, as emphasized above, one then arrives at the relation,

$$\alpha_{K^+K^-} \propto -\alpha_{\pi^+\pi^-} / \sqrt{2.8} \tag{12}$$

where, we have taken for simplicity that the two Brs differ by about $\sqrt{2.8}$ [18].

However, f-dominance of the penguin amplitude, in the h h channel that is our central focus, appearing in the numerator of (4) modifies this expectation appreciably. This is because, it appears that [5].


$$Br(f_0 \to \pi\pi)/Br(f_0 \to KK) \approx 0.4$$
 (13)

c-sudd, 433

In Chann de cours

DELIVE

Ok-shell rescattering phase CP-evenphase => Total amplitude for (-> u da is. complex

$$\alpha_{K_sK_s}/\alpha_{K^+K^-} \approx \sqrt{(23/4)}$$
$$\approx 2.4$$
$$\alpha_{\pi^0\pi^0} = 1.3 \ \alpha_{\pi^+\pi^-}$$

CANDIDATES FOR PRECISION TEST: NEEDS TO BE EXPERIMENTALLY ACCESSIBLE AND BE ALSO AMENABLE TO PRECISE LATTICE CALCULATIONS

Candidate for precision test: CPV in D0=> gamma + [phi => K^+ K^-]

- Requires KK scattering phases for CM energy below around 1 GeV
- Dfferential photon energy spectrum can be used for precision test
- Integrated BR ~ 2.74 pm 0.19 X10^-5 well measured
- Belle-II expected ~10^10 D's/yr ...precise measurement of differential spectrum is clearly feasible

Production mechanisms

 Dominant production: Tree ~ Lambda 大 Interfering penguin ~Lamda^5 Source of cfood C L

Feasibility of lattice extraction of KK phases in ~ 1 GeV energy region

- Good reason to expect that this is doable: see works of JLAB [Briceno et al PRL 2017], RBC-UKQCD [Tainle Wang, Chris Kelly, Aaron Meyer, Mattia Brown, Dan Hoying, David Murphy et al, Lat2018 & 2019 presentations] paper(s) in preparation; see also G. Rendon et al Lat2018
- At ~ 1 GeV or below, relevant to radiative D0 decays, error due to KKpipi, 4 pi contamination likely small if ned She conficms in high Ey so as treduce contamination High Ey so as

BRIEF REMARKS ON RADIATIVE CHARM DECAYS

- New class of radiative decays...interesting nearby resonances relevant for radiative transitions: [see PDGLive]:
 - $\phi(1680)$, $\Gamma_{150}mev \implies \kappa\kappa(892)$ g(1702), $\Gamma_{250}mev \implies grifi, 4\pi$. $D^{2}-58 g(1702)$, $\chi \phi(16\pi)$ $E_{1} g_{300}mev \not\in$
- Best candidates for precision tests of the SM $3 \rightarrow 3$ (170) (100

Another important resonance nearby

(***	particle data group	e				
lome pdg	gLive Summary Tables Re	views, Tables, Plots Parti	cle Listings			
gLive Hom	e > LIGHT UNFLAVORED M	ESONS > $\eta(1760)$			Y) (1760
	riew of Particle Physics. ashi <i>et al.</i> (Particle Data Gro	oup), Phys. Rev. D 98 , 03	30001 (2018)			11.10
LIGHT UNF	FLAVORED MESONS					
(S = C = B)				(1)	SPIRE search	
	$ \begin{array}{l} (\mathbf{r},b,\rho,a) \vdots u\overline{d},(u\overline{u}-d\overline{d})/\sqrt{2},d\overline{u}\\ ,\eta',h,h',\omega,\phi,f,f') \vdots c_1(u\overline{u}+d\overline{d} \end{array} \end{array} $			<u> </u>	tor nice occuron	A .
	a					
	I = (I = 0)					
$\eta(1760)$			his region has been reported	before in the same	system	KM3
Seen (BAL	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the a	ELLO 1989B). Structure in th	1985C, BISELLO 1987).	l before in the same	e system	Emgr
Seen (BAL η(1760)	h by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the ρ MASS	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \; \text{MeV}$	l before in the same	e system	TeA
Seen (BAL η(1760)	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the a	ELLO 1989B). Structure in th	1985C, BISELLO 1987).	d before in the same	e system	TeA
Seen (BAL η(1760)	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the ρ MASS	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \; \text{MeV}$	l before in the same	e system	TeA
Seen (BAL η(1760) η(1760)	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the ρ MASS	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \; \text{MeV}$	before in the same Scale Factor/ Conf. Level		TeA 40 mm
γ Seen (BAL η(1760) Φ	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the ρ MASS	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \text{ MeV}$ $240 \pm 30 \text{ MeV}$	Scale Factor/	P	TeA 41. M/1
Seen (BAL η(1760) η(1760) Decay N <i>Mode</i>	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the a MASS WIDTH Modes 4π $2 \pi^+ 2 \pi^-$	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \text{ MeV}$ $240 \pm 30 \text{ MeV}$	Scale Factor/	P (MeV/c) 823 819	TeA 4n, m/n
$\frac{\eta(1760)}{\eta(1760)}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the α MASS WIDTH Modes 4π	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \; {\sf MeV}$ $240 \pm 30 \; {\sf MeV}$ ${\it Fraction}\; (\Gamma_i / \Gamma)$	Scale Factor/	P (MeV/c) 823	TeA IcA 411, m/11
$\frac{\eta(1760)}{\eta(1760)}$ $\frac{\eta(1760)}{\rho(1760)}$ $\frac{\rho(1760)}{\rho(1760)}$ $\frac{\rho(1760)}{\rho(1760)}$	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the a MASS WIDTH Modes 4π $2 \pi^+ 2 \pi^-$	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \text{ MeV}$ $240 \pm 30 \text{ MeV}$	Scale Factor/	P (MeV/c) 823 819	TeA TeA 411 M/11 60 go
$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the ρ MASS WIDTH Modes 4π $2 \pi^+ 2 \pi^-$ $\pi^+ \pi^- 2 \pi^0$ $\rho^0 \rho^0$ $\rho^+ \rho^-$	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \text{ MeV}$ $240 \pm 30 \text{ MeV}$ <i>Fraction (</i> Γ_i / Γ) seen seen	Scale Factor/	P (MeV/c) 823 819 822 407 407	Engin TeA 411, 1/11 50 go
$ \begin{array}{c} & \chi \\ & \text{Seen} \\ & \text{(BAL} \\ \end{array} \\ \hline & \eta(1760) \\ \hline & \mu(1760) \\ \hline $	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the ρ MASS WIDTH Modes 4π $2 \pi^{+} 2 \pi^{-}$ $\pi^{+} \pi^{-} 2 \pi^{0}$ $\rho^{0} \rho^{0}$	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \text{ MeV}$ $240 \pm 30 \text{ MeV}$ <i>Fraction (Γ_i / Γ)</i> seen seen seen	Scale Factor/	P (MeV/c) 823 819 822 407 407 733	IcA 411, 1/11 50 go
$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the ω MASS WIDTH Modes 4π $2 \pi^{+} 2 \pi^{-}$ $\pi^{+} \pi^{-} 2 \pi^{0}$ $\rho^{0} \rho^{0}$ $\rho^{+} \rho^{-}$ $2 (\pi^{+} \pi^{-} \pi^{0})$ $\omega\omega$	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \text{ MeV}$ $240 \pm 30 \text{ MeV}$ <i>Fraction (Γ_i / Γ)</i> seen seen seen	Scale Factor/	P (MeV/c) 823 819 822 407 407 733 393	IcA 411, 1/11 50 go
$ \begin{array}{c} & \chi \\ & \text{Seen} \\ & \text{(BAL} \\ \end{array} \\ \hline & \eta(1760) \\ \hline & \mu(1760) \\ \hline $	by DM2 in the $\rho\rho$ system (BISE TRUSAITIS 1986B) and in the a MASS WIDTH Modes 4π $2 \pi^{+} 2 \pi^{-}$ $\pi^{+} \pi^{-} 2 \pi^{0}$ $\rho^{0} \rho^{0}$ $\rho^{+} \rho^{-}$ $2 (\pi^{+} \pi^{-} \pi^{0})$	ELLO 1989B). Structure in th	1985C, BISELLO 1987). $1751 \pm 15 \text{ MeV}$ $240 \pm 30 \text{ MeV}$ <i>Fraction</i> (Γ_i / Γ) seen seen seen seen seen	Scale Factor/	P (MeV/c) 823 819 822 407 407 733	IcA 411, 1/11 50 go

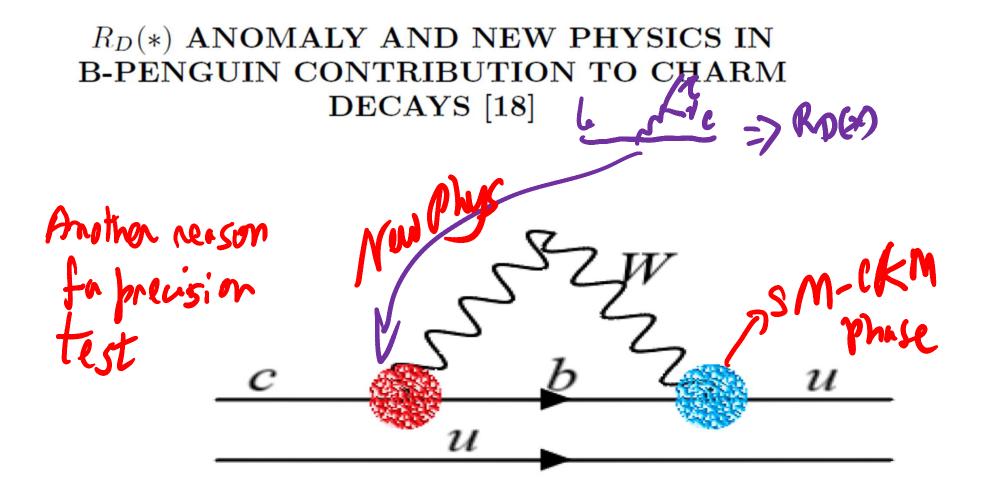


FIG. 2. b-penguin in charm decay; left c-b (red) vertex may have a CP-odd phase endowed by new physics affecting $R_{D(*)}$ whereas the right b-u (blue) vertex contains the SM-CKM phase.

Summary + outlook

- Charm region is rich with resonances
- Some of these are expected to play an important role in driving CP asymmetries, PRA, energy (3 or more particle FS), TCA (4 or more spin-less)
- New class of radiative decays with photon energy < ~300 MeV to resonances which cascade down to several diff FS, such as KK, pi pi, eta'(eta, pi0) pi pi....
- Mixing of D0 weak decays with f0 accounts roughly for the observed size of ΔACP & large SU3 breaking seen for long. Resonances complicate addressing of ΔACP by lattice methods.
- Important target should be precise CP-tests for SM-CKM. For this purpose, it is suggested that the best candidate for lattice is CPV asymmetries (O .1%), Br ~10^-5: D0=> $\gamma\phi$ with ϕ => K+ K-

PRA aswell as energy (x) asy onexported

Lattice-2019; soni-BNL-HET

XTRAS

Published for SISSA by 2 Springer

RECEIVED: March 4, 2012 REVISED: April 22, 2012 ACCEPTED: May 16, 2012 PUBLISHED: June 1, 2012

THEP

5

N

 \bigcirc

H 2

007

me for Theorist.

Repercussions of flavour symmetry breaking on CP violation in D-meson decays

Thorsten Feldmann,^a Soumitra Nandi^a and Amarjit Soni^b

^a Theoretische Elementarteilchenphysik, Naturwissenschaftlich Technische Fakultät, Universität Siegen,

57068 Siegen, Germany

^bPhysics Department, Theory Group, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

E-mail: thorsten.feldmann@uni-siegen.de, nandi@physik.uni-siegen.de, soni@bnl.gov

ABSTRACT: We investigate to what extent the recently measured value for a non-vanishing direct CP asymmetry in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays can be accommodated in the Standard Model (SM) or extensions with a constrained flavour sector, for instance from a sequential 4th generation of quarks (4G). From the comparison with $D^0 \to K^-\pi^+$ branching ratios, we establish large U-spin symmetry $(d \leftrightarrow s)$ breaking effects with large strong phases between different interfering amplitudes. On the basis of conservative estimates on amplitude ratios — which are supported by an analysis of the breaking of a $c \leftrightarrow u$ symmetry in non-leptonic B^0 decays — we find that, in the SM, direct CP asymmetries in the $\pi^+\pi^-$ or K^+K^- modes (or in their difference) of the order of several per mille are still plausible. Due to the constraints on the new CP phases in the 4G model, only moderate effects compared to the SM estimates are possible. We suggest CP studies at LHCb as well as at (Super)B-factories of several distinctive modes, such as $D^+ \to \overline{K}^{(*)0}\pi^+, \phi\pi^+$ and $D_s \to \overline{K}^{(*)0}\pi^+, \phi\pi^+(K^+)$ etc., which should shed more light on the short- and long-distance

Dol: 111+ RULLA

f₀(1710) [t]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

 $\begin{array}{ll} \mbox{Mass} \ m = 1723^{+6}_{-5} \ \mbox{MeV} & (\mbox{S} = 1.6) \\ \mbox{Full width} \ \mbox{\Gamma} = 139 \ \pm \ 8 \ \mbox{MeV} & (\mbox{S} = 1.1) \end{array}$

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
KK	seen	706
$\eta \eta$	seen	665
$\pi \pi$	seen	851
$\omega \omega$	seen	360

	Send Feedback
(1927) (1927) particle data group	
Home pdgLive Summary Tables Reviews, Tables, Plots	Particle Listings
pdgLive Home > LIGHT UNFLAVORED MESONS > $\eta(1760)$	
2018 Review of Particle Physics. M. Tanabashi <i>et al.</i> (Particle Data Group), Phys. Rev. D) 98 , 030001 (2018)
LIGHT UNFLAVORED MESONS (S = C = B = 0)	
For $I = 1 \ (\pi, \ b, \ \rho, \ a)$: $u \ \overline{d}$, $(u \ \overline{u} - d \ \overline{d}) / \sqrt{2}$, $d \ \overline{u}$;	(INSPIRE search)
for $I=0~(\eta,~\eta^{\prime},~h,~h^{\prime},~\omega,~\phi,~f,~f^{\prime})$: $c_1(~u\overline{u}+~d\overline{d}~)+~c_2(~s\overline{s}~)$	
$\eta(1760)$ $I^G(J^{PC}) = 0^+(0^{-+})$	
Seen by DM2 in the $\rho\rho$ system (BISELLO 1989B). Struct (BALTRUSAITIS 1986B) and in the $\omega\omega$ system (BALTRU	ture in this region has been reported before in the same system ISAITIS 1985C, BISELLO 1987).
$\eta(1760)$ MASS	$1751\pm15~{\sf MeV}$
η(1760) WIDTH	240 ± 30 MeV