Radiative leptonic decays on the lattice

Stefan Meinel (University of Arizona and RBRC)

in collaboration with
Christopher Kane (University of Arizona), Christoph Lehner (University of Regensburg and BNL), and Amarjit Soni (BNL)

Lattice 2019, Wuhan, China

$B^{-} \rightarrow \ell^{-} \bar{\nu} \gamma$

- Adding a (hard) photon removes the $\left(m_{\ell} / m_{B}\right)^{2}$ helicity suppression.
- This is the simplest decay that (for large E_{γ}) probes the first inverse moment of the B-meson light-cone distribution amplitude,

$$
1 / \lambda_{B}=\int_{0}^{\infty} \frac{\Phi_{B^{+}}(\omega)}{\omega} \mathrm{d} \omega
$$

λ_{B} is an important input in QCD-factorization predictions for nonleptonic B decays and is poorly known.
[See, for example, M. Beneke, V. Braun, Y. Ji, Y.-B. Wei, arXiv:1804.04962/JHEP 2018;
M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

- Belle: $\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu} \gamma, E_{\gamma}>1 \mathrm{GeV}\right)<3.0 \times 10^{-6}$

SM: $\mathcal{O}\left(10^{-6}\right)$ [arXiv:1810.12976/PRD 2018]
$B_{s}^{0} \rightarrow \ell^{+} \ell^{-} \gamma$ and $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma$

- Adding a (hard) photon removes the $\left(m_{\ell} / m_{B}\right)^{2}$ helicity suppression.
- This decay is sensitive to all operators in the $b \rightarrow s \ell^{+} \ell^{-}$weak effective Hamiltonian, including O_{9} ($B_{s} \rightarrow \ell^{+} \ell^{-}$is sensitive to $O_{10, S, P}-O_{10, S, P}^{\prime}$ only).
- It may be possible to observe $B_{s}^{0} \rightarrow \ell^{+} \ell^{-} \gamma$ at the LHC
[F. Dettori, D. Guadagnoli, M. Reboud, arXiv:1610.00629/PLB 2017]
- BaBar: $\mathcal{B}\left(B^{0} \rightarrow e^{+} e^{-} \gamma\right)<1.2 \times 10^{-7}, \mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<1.5 \times 10^{-7}$ [arXiv:0706.2870/PRD 2008]

Radiative leptonic decays of $D_{(s)}^{ \pm}, K^{ \pm}$, and $\pi^{ \pm}$mesons

- $D_{s}^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}>10 \mathrm{MeV}\right)<1.3 \times 10^{-4}$

SM: $\mathcal{O}\left(10^{-4}\right)$
[BESIII Collaboration, arXiv:1902.03351]

- $D^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}>10 \mathrm{MeV}\right)<3.0 \times 10^{-5}$

SM: $\mathcal{O}\left(10^{-5}\right)$
[BESIII Collaboration, arXiv:1702.05837/PRD 2017]

- $K^{-} \rightarrow e^{-} \bar{\nu} \gamma, \quad K^{-} \rightarrow \mu^{-} \bar{\nu} \gamma, \quad \pi^{-} \rightarrow e^{-} \bar{\nu} \gamma, \quad \pi^{-} \rightarrow \mu^{-} \bar{\nu} \gamma:$

The partial branching fractions, photon-energy spectra, and angular distributions are known from multiple experiments.

Contributions from "inner bremsstrahlung," "structure-dependent," and interference terms are distinguished.
[M. Bychkov, G. D'Ambrosio (Particle Data Group), "Form Factors for Radiative Pion and Kaon Decays," Section 68 of the Review of Particle Physics, 2018]

Hadronic tensor and form factors in Minkowski space

$$
\begin{gathered}
J_{\mu}=\sum_{q} e_{q} \bar{q} \gamma_{\mu} \boldsymbol{q}, \quad J_{\nu}^{\text {weak }}=\bar{u} \gamma_{\nu}\left(1-\gamma_{5}\right) b \\
T_{\mu \nu}=-i \int d^{4} x e^{i p_{\gamma} \cdot x}\langle 0| \mathrm{T}\left(J_{\mu}(x) J_{\nu}^{\text {weak }}(0)\right)\left|B^{-}\left(\mathbf{p}_{B}\right)\right\rangle \\
=\epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{B} f_{B} \\
+\left(p_{\gamma}\right)_{\mu} \text {-terms } \quad\left(p_{B}=m_{B} v\right)
\end{gathered}
$$

Hadronic tensor in Minkowski space: time integrals

$$
\begin{aligned}
T_{\mu \nu}^{<}= & -i \int_{-\infty(1-i \epsilon)}^{0} d t e^{i E_{\gamma} t} \int d^{3} x e^{-i \mathbf{p}_{\gamma} \cdot \mathbf{x}}\langle 0| J_{\nu}^{\text {weak }}(0) J_{\mu}(t, \mathbf{x})\left|B^{-}\left(\mathbf{p}_{B}\right)\right\rangle \\
= & -\sum_{n} \frac{1}{2 E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}} \frac{1}{E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}-i \epsilon} \\
& \times\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle\left\langle n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right| J^{\mu}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle
\end{aligned}
$$

(In infinite volume, the sum over n includes an integral over the continuous spectrum of multi-particle states)

Hadronic tensor in Minkowski space: time integrals

$$
\begin{aligned}
T_{\mu \nu}^{>}= & -i \int_{0}^{\infty(1-i \epsilon)} \mathrm{d} t e^{i E_{\gamma} t} \int d^{3} x e^{-i \mathbf{p}_{\gamma} \cdot x}\langle 0| J_{\mu}(t, \mathbf{x}) J_{\nu}^{\text {weak }}(0)\left|B^{-}\left(\mathbf{p}_{B}\right)\right\rangle \\
= & \sum_{m} \frac{1}{2 E_{m, \mathbf{p}_{\gamma}}} \frac{1}{E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}-i \epsilon} \\
& \times\langle 0| J^{\mu}(0)\left|m\left(\mathbf{p}_{\gamma}\right)\right\rangle\left\langle m\left(\mathbf{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle
\end{aligned}
$$

(In infinite volume, the sum over n includes an integral over the continuous spectrum of multi-particle states)

Three-point function in Euclidean space

Without time integral:

$$
\begin{gathered}
C_{\mu \nu}\left(t, t_{B}\right)=\int d^{3} x \int d^{3} y e^{-i \mathbf{p}_{\gamma} \cdot \mathbf{x}} e^{i \mathbf{p}_{B} \cdot \mathbf{y}}\left\langle J_{\mu}(t, \mathbf{x}) J_{\nu}^{\text {weak }}(0, \mathbf{0}) \phi_{B}^{\dagger}\left(t_{B}, \mathbf{y}\right)\right\rangle \\
\phi_{B} \sim \bar{u} \gamma_{5} b
\end{gathered}
$$

Three-point function in Euclidean space: time integrals

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{<}\left(t_{B}, T\right)= & \int_{-T}^{0} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & \left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}} \frac{1}{E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}} \\
& \times\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle\left\langle n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right| J_{\mu}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}\right)
\end{aligned}
$$

Three-point function in Euclidean space: time integrals

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{<}\left(t_{B}, T\right)= & \int_{-T}^{0} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & \left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}} \frac{1}{E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}} \\
& \times\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle\left\langle n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right| J_{\mu}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}\right)
\end{aligned}
$$

The unwanted exponential $e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}$ goes to zero for large T if $E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}>E_{B}$.

Three-point function in Euclidean space: time integrals

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{<}\left(t_{B}, T\right)= & \int_{-T}^{0} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & \left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}} \frac{1}{E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}} \\
& \times\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle\left\langle n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right| J_{\mu}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}\right)
\end{aligned}
$$

The unwanted exponential $e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}$ goes to zero for large T if $E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}>E_{B}$.
Because the states $\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle$ have the same quark-flavor quantum numbers as the B meson, we have $E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)} \geq E_{B,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}=\sqrt{m_{B}^{2}+\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)^{2}}$.

Three-point function in Euclidean space: time integrals

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{<}\left(t_{B}, T\right)= & \int_{-T}^{0} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & \left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}} \frac{1}{E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}} \\
& \times\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle\left\langle n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right| J_{\mu}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}\right)
\end{aligned}
$$

The unwanted exponential $e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}$ goes to zero for large T if $E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}>E_{B}$.
Because the states $\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle$ have the same quark-flavor quantum numbers as the B meson, we have $E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)} \geq E_{B,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}=\sqrt{m_{B}^{2}+\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)^{2}}$.
The inequality becomes $\sqrt{\mathbf{p}_{\gamma}^{2}}+\sqrt{m_{B}^{2}+\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)^{2}}>\sqrt{m_{B}^{2}+\mathbf{p}_{B}^{2}}$.
This is in fact always satisfied (as long as $\mathbf{p}_{\gamma} \neq 0$).

Three-point function in Euclidean space: time integrals

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{>}\left(t_{B}, T\right)= & \int_{0}^{T} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & -\left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{m, \mathbf{p}_{\gamma}}} \frac{1}{E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}} \\
& \times\langle 0| J_{\mu}(0)\left|m\left(\mathbf{p}_{\gamma}\right)\right\rangle\left\langle m\left(\mathbf{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{\left(E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}\right) T}\right)
\end{aligned}
$$

Three-point function in Euclidean space: time integrals

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{>}\left(t_{B}, T\right)= & \int_{0}^{T} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & -\left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{m, \mathbf{p}_{\gamma}}} \frac{1}{E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}} \\
& \times\langle 0| J_{\mu}(0)\left|m\left(\mathbf{p}_{\gamma}\right)\right\rangle\left\langle m\left(\mathbf{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{\left(E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}\right) T}\right)
\end{aligned}
$$

The unwanted exponential $e^{\left(E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}\right) T}$ goes to zero for large T if $E_{m, \mathbf{p}_{\gamma}}>E_{\gamma}$.
Because the states $\left|m\left(\mathbf{p}_{\gamma}\right)\right\rangle$ have a nonzero mass, this is always satisfied.

In summary, for $\mathbf{p}_{\gamma} \neq 0$,

$$
T_{\mu \nu}=-\lim _{T \rightarrow \infty} \lim _{B} \frac{2 E_{B} e^{-E_{B} t_{B}}}{\left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle} I_{\mu \nu}\left(t_{B}, T\right)
$$

Parameters of our initial runs

We initially consider $D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ and $K^{-} \rightarrow \ell^{-} \bar{\nu} \gamma$ decays, with the following setup:

- \mathbb{Z}_{2} random-wall source at location of weak current
- Disconnected diagrams neglected
- RBC/UKQCD ensembles, $24^{3} \times 64, a \approx 0.11 \mathrm{fm}, m_{\pi} \approx 340 \mathrm{MeV}$ and $48^{3} \times 96, a \approx 0.11 \mathrm{fm}, m_{\pi} \approx 140 \mathrm{MeV}$
- Up/down/strange valence quarks: same domain-wall action as sea quarks
- Charm valence quarks: Möbius domain-wall with "stout" smearing
- "Mostly nonperturbative" renormalization
- $\mathbf{p}_{K / D_{s}}=0, \mathbf{p}_{\gamma}^{2} \in\{1,2,3,4,5\}\left(\frac{2 \pi}{L}\right)^{2}$
- All-mode averaging with 16 sloppy and 1 exact samples per configuration

I will show preliminary results from only 25 configurations of the $24^{3} \times 64$ ensemble.
$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ three-point functions: $\mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-12$ The following plots show $-\frac{2 E_{D_{s}} e^{-E_{D_{s}} t_{D_{s}}}}{\left\langle D_{s}\left(\mathbf{p}_{D_{s}}\right)\right| \phi_{D_{s}}^{\dagger}(0)|0\rangle} C_{\mu \nu}\left(t, t_{D_{s}}\right)$ as a function of t.

$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $T: \mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-12$

$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $T: \mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-15$

$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $T: \mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-12$

$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $T: \mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-15$

$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $T: \mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-12$
Recall

$$
\begin{aligned}
T_{\mu \nu}= & \epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{D_{s}} f_{D_{s}} \\
& +\left(p_{\gamma}\right)_{\mu} \text {-terms }
\end{aligned}
$$

\longrightarrow also extract $f_{D_{s}}$ as a cross-check
$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $T: \mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-12$

Recall

$$
\begin{aligned}
T_{\mu \nu}= & \epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{D_{s}} f_{D_{s}} \\
& +\left(p_{\gamma}\right)_{\mu} \text {-terms }
\end{aligned}
$$

\longrightarrow also extract $f_{D_{s}}$ as a cross-check

Yellow line $=$ FLAG 2019 average [arXiv:1902.08191]
$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $T: \mathbf{p}_{\gamma}=(0,0,1) \frac{2 \pi}{L}, t_{D_{s}} / a=-15$

Recall

$$
\begin{aligned}
T_{\mu \nu}= & \epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{D_{s}} f_{D_{s}} \\
& +\left(p_{\gamma}\right)_{\mu} \text {-terms }
\end{aligned}
$$

\longrightarrow also extract $f_{D_{s}}$ as a cross-check

Yellow line $=$ FLAG 2019 average [arXiv:1902.08191]

$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $E_{\gamma}:$

 $t_{D_{s}} / a=-12, T / a=8$

$D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ form factors vs $E_{\gamma}: \quad t_{D_{s}} / a=-15, T / a=10$

$K^{-} \rightarrow \ell^{-} \bar{\nu} \gamma$ form factors vs $E_{\gamma}:$
 $t_{K} / a=-12, T / a=8$

$K^{-} \rightarrow \ell^{-} \bar{\nu} \gamma$ form factors vs $E_{\gamma}:$
 $t_{K} / a=-15, T / a=10$

Conclusions and Outlook

- Radiative leptonic decays can be calculated on the lattice. We have preliminary results for $D_{s}^{+} \rightarrow \ell^{+} \nu \gamma$ and $K^{-} \rightarrow \ell^{-} \bar{\nu} \gamma$.
- For $K^{-} \rightarrow \ell^{-} \bar{\nu} \gamma$, we need to reach lower photon energies. We are investigating moving frames (i.e., nonzero \mathbf{p}_{K}) and runs with larger volume.
- To study the $B_{(s)}$ radiative leptonic decays with the domain-wall action for the heavy quark, we will need to extrapolate in the mass.

We are also considering the "RHQ" action (anisotropic clover), but the problem is that this action is only on-shell improved.

