An exploratory study of heavy-light semileptonics using distillation

Felix Erben
RBC/UKQCD

17th June 2019
The RBC & UKQCD collaborations

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

University of Connecticut
Bigeng Wang
Tianle Wang
Yidi Zhao

BNL and BNL/RBRC

University of Connecticut
Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

University of Connecticut

Edinburgh University
Peter Boyle
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tadeusz Janowski
Julia Kettle
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
Tobias Tsang
Andrew Yong
Azusa Yamaguchi

University of Connecticut

KEK
Julien Frison

University of Liverpool
Nicolas Garron

MIT
David Murphy

Peking University
Xu Feng

University of Regensburg
Christoph Lehner (BNL)

University of Southhampton
Nils Asmussen
Jonathan Flynn
Ryan Hill
Andreas Jüttner
James Richings
Chris Sachrajda

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)
1 Introduction
 • Motivation
 • heavy-light semileptonic decays

2 Distillation (in Grid)

3 Analysis
 • First glance at data
 • Comparison to Z_2 noise with sequential solves

4 Conclusions & Outlook
Motivation

• Semi-leptonic decays give access to CKM matrix elements, e.g. $|V_{cd}|$ from $D \to \pi \ell \nu$.
• Current tension in lepton flavour universality detected in $R(D^{(*)}) = \frac{B(B \to D^{(*)} \tau \nu \tau)}{B(B \to D^{(*)} \ell \nu \ell)}$ ⇒ clear first-principles determination needed
• Interesting processes suffer from bad signal-to-noise ratios ⇒ advanced methods needed
• Testing ground for recently implemented distillation code in Grid (& Hadrons)

Related RBC/UKQCD charm-to-bottom programme talks:

• Semileptonic B decays with RHQ b quarks [Mon 16:50, Ryan Hill]
• Neutral meson mixing and related observables in the D_s and B_s meson systems [Tue 15:40, Tobias Tsang]
• Semileptonic form factors for exclusive $B_s \to K \ell \nu$ and $B_s \to D_s \ell \nu$ decays [Tue, Poster, Oliver Witzel]
heavy-light semileptonic decays

\[t_{\text{snk}} = t_{\text{src}} + \Delta T \]

\[t_{\text{src}} \in \{ \gamma_5, \gamma_4 \gamma_5 \} \]

\[\Gamma_{\text{src}} \in \{ \gamma_5, \gamma_4 \gamma_5 \} \]

\[\Gamma_{\text{op}} = V^\mu \]

\[\Gamma_{\text{snk}} \in \{ \gamma_5, \gamma_4 \gamma_5 \} \]

\[q_{\text{spec}} \]

\[q_i = h_1, h_2, q_f = l \]

for \(D(B) \rightarrow \pi \): \(q_{\text{spec}} = l, q_i = h_1, h_2, q_f = l \)
Pointlike weak operator

Three-point functions C_{3}^{pp} have the form:

$$
\tilde{C}_{3}^{pp}(t, \Delta T) \propto \left(e^{E_{i}t} - e^{E_{f}(\Delta T - t)} \right).
$$

we want to map out a large momentum transfer, so $D(p_{i} = 0) \rightarrow \pi(p_{f})$ are best suited.

We study different values of source-sink separations ΔT and different momenta p_{f}.
Distillation

- small ΔT: cannot isolate ground state
- large ΔT: bad signal-to-noise ratio

\Rightarrow need good smearing technique and advanced numerical method

- Distillation with (stochastic) LapH might help with both [arxiv:0905.2160]
 [arxiv:1104.3870]

- idea: construct a smearing matrix from N vec low modes of the 3D lattice Laplacian (tuneable parameter):

$$S_{xy}(t) = N \text{vec} \sum_{k=1}^{V} V_k(x,t) V_k^*(y,t),$$

- expensive only once, assembly of correlation functions (momenta, Γ-structure) is the last step of the computation
- Smeared propagators can be projected into smaller subspace \Rightarrow Can be re-used in other projects
• small ΔT: cannot isolate ground state
• large ΔT: bad signal-to-noise ratio
\Rightarrow need good smearing technique and advanced numerical method
• Distillation with (stochastic) LapH might help with both [arxiv:0905.2160] [arxiv:1104.3870]

idea: construct a smearing matrix from N_{vec} low modes of the 3D lattice Laplacian (tuneable parameter):

$$S_{xy}(t) = \sum_{k=1}^{N_{\text{vec}}} V_k(x, t) V_k^\dagger(y, t),$$

• expensive only once, assembly of correlation functions (momenta, Γ-structure) is the last step of the computation
• Smeeared propagators can be projected into smaller subspace
 \Rightarrow Can be re-used in other projects
We want to compute:

\[C_3 = \left\langle \Gamma_{\text{snk}} D^{-1}(t_{\text{snk}}, t) \Gamma_{\text{op}} D^{-1}(t, t_{\text{src}}) \Gamma_{\text{src}} D^{-1}(t_{\text{src}}, t_{\text{snk}}) \right\rangle. \]

The central semileptonic insertion must be unsmeared and we want to smear with \(S(t) = V(t) V^\dagger(t) \) (spatial sums implicit) only at the \(\Gamma_{\text{src}}, \Gamma_{\text{snk}} \) insertions:

\[C_3 = \left\langle \Gamma_{\text{snk}} V(t_{\text{snk}}) V^\dagger(t_{\text{snk}}) D^{-1}(t_{\text{snk}}, t) \Gamma_{\text{op}} D^{-1}(t, t_{\text{src}}) V(t_{\text{src}}) V^\dagger(t_{\text{src}}) \Gamma_{\text{src}} V(t_{\text{src}}) V^\dagger(t_{\text{src}}) D^{-1}(t_{\text{src}}, t_{\text{snk}}) V(t_{\text{snk}}) V^\dagger(t_{\text{snk}}) \right\rangle. \]
using γ_5 hermiticity we can invert some of the quark lines and can write, using meson fields

- $\phi_{t'}(x, t) = D^{-1}_{x,t,x',t'} V_x(t')$ are the unsmeared sinks, i.e. a solve on a source with support on timeslice t'. [arxiv:1403.5575]

- Constructed from sources on two timeslices, t_{src} and t_{snk}.

- ϕ cannot be projected into a smaller subspace (i.e. into a perambulator object).
Lattice setup

- RBC-UKQCD’s 2+1 flavour domain wall fermions
- feasibility study on $L^3 \cdot T = 24^3 \cdot 64$ lattice, $m_\pi \approx 340\text{MeV}$
- one light quark ($a m_l = 0.005, M_5 = 1.8, L_s = 16$)
- two different heavy-quark masses with $a m_h = 0.58$ and $a m_h = 0.64$
 using a stout-smeared action ($\rho = 0.1, N = 3$) with $M_5 = 1.0, L_s = 12$ and Moebius-scale = 2 [arxiv:1812.08791]
Lattice setup

- RBC-UKQCD’s 2+1 flavour domain wall fermions
- feasibility study on $L^3 \cdot T = 24^3 \cdot 64$ lattice, $m_\pi \approx 340\text{MeV}$
- one light quark ($a m_l = 0.005, M_5 = 1.8, L_s = 16$)
- two different heavy-quark masses with $a m_h = 0.58$ and $a m_h = 0.64$
 using a stout-smeared action ($\rho = 0.1, N = 3$) with
 $M_5 = 1.0, L_s = 12$ and Moebius-scale = 2 [arxiv:1812.08791]

Current level of statistics:

- 2 configurations
- 16 solves on each config
- 4 different $\Delta T = 12, 16, 20, 24$
- all lattice momenta up to $n^2 = 4$
V^0, $\Delta T = 16$, $m_h = 0.58$

grey bands: free energies $E_D - E_\pi(p_f)$
$V^i, \Delta T = 16, m_h = 0.58$

grey bands: free energies $E_D - E_\pi(p_f)$
V^0, comparison of ΔT (pp channel), $m_h = 0.58$

grey bands: free energies $E_D - E_\pi(p_f)$
V^i, comparison of ΔT (pp channel), $m_h = 0.58$

$E_D - E_{\pi}$

grey bands: free energies $E_D - E_{\pi}(p_f)$
Z_2 noise with sequential solves

- Z_2 noise at source
- exploit γ_5 hermiticity for q_i quark
- compute q_{spec} quark line
- sequential solve on q_{spec} quark line

\Rightarrow 1 inversion for each \vec{p}, Γ_{snk}, ΔT
Z\(_2\) noise with sequential solves

- Z\(_2\) noise at source
- exploit \(\gamma_5\) hermiticity for \(q_i\) quark
- compute \(q_{\text{spec}}\) quark line
- sequential solve on \(q_{\text{spec}}\) quark line

\[\Rightarrow 1\text{ inversion for each } \vec{p}, \Gamma_{\text{snk}}, \Delta T\]

current level of statistics:

- 21 configurations
- 2 solves on each config
- 3 different \(\Delta T = 12, 16, 20\)
- one lattice momentum each up to \(n^2 = 5\)
V^0, comparison of ΔT (pp channel)

lh1_pp → ll_pp (temporal vector current, 21 confs)

$p = (0, 0, 0)$

$\Delta T = 12$

$p = (1, 0, 0)$

$\Delta T = 16$

$p = (1, 1, 0)$

$\Delta T = 20$

$p = (2, 0, 0)$

$p = (2, 1, 0)$

$p = (2, 2, 0)$
V^i, comparison of ΔT (pp channel)
Presented here: $q_{\text{spec}} = l, q_{f} = l, q_{i} = h_{1,2,\ldots}$

<table>
<thead>
<tr>
<th>#Inv / conf / t_{src}</th>
<th>Distillation</th>
<th>Z_{2} seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\text{vec}} \times 4$</td>
<td>$N_{\Delta T} \times N_{\vec{p}} \times N_{\Gamma_{\text{snk}}}$</td>
<td></td>
</tr>
<tr>
<td>total #Inv</td>
<td>7680</td>
<td>1008</td>
</tr>
</tbody>
</table>

$\Rightarrow \approx$ factor 8 in inversion cost for Distillation, plus non-negligible cost for meson fields (another factor 2-3)

- \approx factor 2-6 error reduction in Distillation, depending on p and Γ_{op}

\Rightarrow no clear winner

Possible setup we are interested in:
$D \rightarrow \pi, D \rightarrow K, D_{s} \rightarrow K, D_{(s)} \rightarrow D'_{(s)}$: $q_{\text{spec}} = l, s, q_{f} = l, s, h, q_{i} = h_{1,2,\ldots}$

<table>
<thead>
<tr>
<th>#Inv / conf / t_{src}</th>
<th>Distillation</th>
<th>Z_{2} seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\text{vec}} \times 4$</td>
<td>$N_{\Delta T} \times N_{\vec{p}} \times N_{\Gamma_{\text{snk}}} \times #{q_{\text{spec}}, q_{f}}$</td>
<td></td>
</tr>
<tr>
<td>total #Inv</td>
<td>unchanged</td>
<td>increased by factor ≈ 5</td>
</tr>
</tbody>
</table>

\Rightarrow Cost of Distillation might pay off
Conclusions:

- computed 2pt-functions and 3pt-functions to study heavy-light semileptonics using the newly implemented distillaton code in Grid and Hadrons
- Distillation is expensive, but has several advantages:
 - different momenta and Γ_{snk} are free
 - smearing automatically implemented
 - perambulators (inversions) can be re-used for other projects

Outlook:

- we want to study $D \rightarrow \pi$, $D \rightarrow K$, $D_s \rightarrow K$, $D_{(s)} \rightarrow D'_{(s)}$ with larger statistics on the 24^3 ensemble
- Some interesting RBC-UKQCD ensembles in production at the moment (2.8GeV at the physical point) [Thu, 14:00, Robert Mawhinney]

Longer-term goal:

- use ensembles with smaller lattice spacing to extrapolate to physical B
Thank you!
using γ_5 hermiticity we can invert some of the quark lines and can write, using meson fields

$$C = M_{\Gamma_{op}}(\overline{\phi}_{t_{src}}, \phi_{t_{snk}}, t) M_{\Gamma_{src}}(\varphi_{t_{snk}}, \varphi, t_{src}) M_{\Gamma_{snk}}(\overline{\varphi}, \varphi, t_{snk}),$$
Distillation

\[C = M_{\Gamma_{\text{op}}} (\bar{\phi}_{t_{\text{src}}} , \phi_{t_{\text{snk}}} , t) M_{\Gamma_{\text{src}}} (\phi_{t_{\text{snk}}} , \rho , t_{\text{src}}) M_{\Gamma_{\text{snk}}} (\bar{\rho} , \rho , t_{\text{snk}}) , \]

where

\[\rho_{\alpha}^{[n,d]}(\vec{x}, t) = \sum_{k,l,t',\beta} v_{ka}(\vec{x}; t) P_{k\alpha,l\beta}(t, t') \rho^{[n]}_{l\beta}(t') , \]

\[\phi_{\alpha}^{[n,d]}(\vec{x}', t') = \sum_{a,b,\beta,t,\vec{x}} D_{a\alpha,b\beta}^{-1}(\vec{x}', t'; \vec{x}, t) \rho_{\beta}^{[n,d]}(\vec{x}, t) , \]

\[\tau_{\alpha}^{[n,d]}(t') = \sum_{a,b,\beta,t,\vec{x}',\vec{x}} v_{ka}(\vec{x}'; t') \phi_{\alpha}^{[n,d]}(\vec{x}', t') , \]

\[\phi_{\alpha}^{[n,d]}(\vec{x}, t) = \sum_{k} v_{ka}(\vec{x}; t) \tau_{k\alpha}^{[n,d]}(t) . \]
\[M_{\Gamma}^{[n_1,d_1;n_2,d_2]}(\varphi_q, \varrho_{q'}, t, \vec{p}) = \sum_{\vec{x}, a, \alpha, \beta} e^{-i\vec{p} \cdot \vec{x}} (\varphi_q)_{a \alpha}^{[n_1,d_1]}(\vec{x}, t) \Gamma_{\alpha \beta} (\varrho_{q'})_{a \beta}^{[n_2,d_2]}(\vec{x}, t). \]
\[q^2 = (E_D - E_\pi)^2 - (p_D - p_\pi)^2 \]

\[= m_D^2 + p_D^2 + m_\pi^2 + p_\pi^2 - 2\sqrt{m_D^2 + p_D^2}\sqrt{m_\pi^2 + p_\pi^2} - (p_D - p_\pi)^2 \]

\[p_{\text{max}}^2 = 4 \]
q^2 range, physical meson masses

\[
q^2 = (E_D - E_\pi)^2 - (p_D - p_\pi)^2
\]

\[
= m_D^2 + p_D^2 + m_\pi^2 + p_\pi^2 - 2\sqrt{m_D^2 + p_D^2}\sqrt{m_\pi^2 + p_\pi^2} - (p_D - p_\pi)^2
\]

\[
p^2_{\text{max}} = 4
\]
\(V^0, \Delta T = 16, m_h = 0.64\)

Grey bands: free energies \(E_D - E_\pi(p_f)\)
$V^i, \Delta T = 16, m_h = 0.64$

grey bands: free energies $E_D - E_\pi(p_f)$
V^0, comparison of ΔT (pp channel), $m_h = 0.64$

grey bands: free energies $E_D - E_\pi(p_f)$
V^i, comparison of ΔT (pp channel), $m_h = 0.64$

grey bands: free energies $E_D - E_\pi(p_f)$
N_{vec} comparison, pp

old: 0.99656(95)

Z_2 (100 conff, 32 hits)

$N=30$ (16 conff, 1 hit)

$N=40$ (16 conff, 1 hit)

$N=50$ (16 conff, 1 hit)

$N=60$ (16 conff, 1 hit)

$N=75$ (16 conff, 1 hit)

$N=80$ (16 conff, 1 hit)

$N=100$ (16 conff, 1 hit)
N_{vec} comparison, ii

\begin{itemize}
 \item Z_2 (100 conf, 32 hits)
 \item $N=30$ (16 conf, 1 hit)
 \item $N=40$ (16 conf, 1 hit)
 \item $N=50$ (16 conf, 1 hit)
 \item $N=60$ (16 conf, 1 hit)
 \item $N=75$ (16 conf, 1 hit)
 \item $N=80$ (16 conf, 1 hit)
 \item $N=100$ (16 conf, 1 hit)
\end{itemize}