An exploratory study of heavy-light semileptonics using distillation

Felix Erben RBC/UKQCD

17th June 2019

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>UC Boulder</u>

Oliver Witzel

CERN Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski

Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi

KEK Julien Frison

University of Liverpool

Nicolas Garron

MIT

David Murphy

<u>Peking University</u> Xu Feng

University of Regensburg Christoph Lehner (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Outline

1 Introduction

- Motivation
- heavy-light semileptonic decays

2 Distillation (in Grid)

3 Analysis

- First glance at data
- Comparison to Z_2 noise with sequential solves

4 Conclusions & Outlook

Motivation

- Semi-leptonic decays give access to CKM matrix elements, e.g. $|V_{cd}|$ from $D \rightarrow \pi \ell \nu$.
- current tension in lepton flavour universality detected in $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})}$
 - \Rightarrow clear first-principles determination needed
- Interesting processes suffer from bad signal-to-noise ratios
 - \Rightarrow advanced methods needed
- Testing ground for recently implemented distillation code in Grid (& Hadrons)

Related RBC/UKQCD charm-to-bottom programme talks:

- Semileptonic B decays with RHQ b quarks [Mon 16:50, Ryan Hill]
- Neutral meson mixing and related observables in the $D_{(s)}$ and $B_{(s)}$ meson systems $_{\rm [Tue 15:40, \ Tobias \ Tsang]}$
- Semileptonic form factors for exclusive $B_s \to K \ell \nu$ and $B_s \to D_s \ell \nu$ decays [Tue, Poster, Oliver Witzel]

[github.com/paboyle/Grid]

[github.com/paboyle/Grid/tree/

develop/Hadrons]

heavy-light semileptonic decays

for $D(B)
ightarrow \pi$: $q_{
m spec} = l$, $q_{
m i} = h_1, h_2$, $q_{
m f} = l$

$$ilde{C}_3^{pp}(t,\Delta T)\propto \left(e^{E_it}-e^{E_f(\Delta T-t)}
ight).$$

we want to map out a large momentum transfer, so ${\it D}(p_i=0) \to \pi(p_f)$ are best suited.

We study different values of source-sink separations ΔT and different momenta \mathbf{p}_f .

Distillation

- small ΔT : cannot isolate ground state
- large ΔT : bad signal-to-noise ratio
- $\Rightarrow\,$ need good smearing technique and advanced numerical method
 - Distillation with (stochastic) LapH might help with both [arxiv:0905.2160] [arxiv:1104.3870]

Distillation

- small ΔT : cannot isolate ground state
- large ΔT : bad signal-to-noise ratio
- $\Rightarrow\,$ need good smearing technique and advanced numerical method
 - Distillation with (stochastic) LapH might help with both [arxiv:0905.2160] [arxiv:1104.3870]

idea: construct a smearing matrix from $N_{\rm vec}$ low modes of the 3D lattice Laplacian (tuneable parameter):

$$S_{xy}(t) = \sum_{k=1}^{N_{vec}} V_k(x,t) V_k^{\dagger}(y,t),$$

- expensive only once, assembly of correlation functions (momenta, Γ -structure) is the last step of the computation
- Smeared propagators can be projected into smaller subspace
 - \Rightarrow Can be re-used in other projects

We want to compute:

$$C_3 = \langle \Gamma_{\rm snk} D^{-1}(t_{\rm snk},t) \Gamma_{\rm op} D^{-1}(t,t_{\rm src}) \Gamma_{\rm src} D^{-1}(t_{\rm src},t_{\rm snk}) \rangle$$

The central semileptonic insertion must be unsmeared and we want to smear with $S(t) = V(t)V^{\dagger}(t)$ (spatial sums implicit) only at the $\Gamma_{\rm src}, \Gamma_{\rm snk}$ insertions:

$$C_{3} = \langle \Gamma_{\rm snk} V(t_{\rm snk}) V^{\dagger}(t_{\rm snk}) D^{-1}(t_{\rm snk}, t) \Gamma_{\rm op} D^{-1}(t, t_{\rm src}) V(t_{\rm src}) V^{\dagger}(t_{\rm src}) \\ \Gamma_{\rm src} V(t_{\rm src}) V^{\dagger}(t_{\rm src}) D^{-1}(t_{\rm src}, t_{\rm snk}) V(t_{\rm snk}) V^{\dagger}(t_{\rm snk}) \rangle \,.$$

Distillation

using γ_5 hermiticity we can invert some of the quark lines and can write, using meson fields

- $\phi_{t'}(x, t) = D_{x,t,x',t'}^{-1} V_x(t')$ are the unsmeared sinks, i.e. a solve on a source with support on timeslice t'. [arxiv:1403.5575]
- Constructed from sources on two timeslices, $t_{\rm src}$ and $t_{\rm snk}$.
- φ cannot be projected into a smaller subspace (i.e. into a perambulator object).

Lattice setup

- RBC-UKQCD's 2+1 flavour domain wall fermions
- feasibility study on $L^3 \cdot T = 24^3 \cdot 64$ lattice, $m_\pi pprox 340 {
 m MeV}$
- one light quark $(am_l = 0.005, M_5 = 1.8, L_s = 16)$
- two different heavy-quark masses with $am_h = 0.58$ and $am_h = 0.64$ using a stout-smeared action ($\rho = 0.1, N = 3$) with $M_5 = 1.0, L_s = 12$ and Moebius-scale = 2 [arxiv:1812.08791]

Lattice setup

- RBC-UKQCD's 2+1 flavour domain wall fermions
- feasibility study on $L^3 \cdot T = 24^3 \cdot 64$ lattice, $m_\pi pprox 340 {
 m MeV}$
- one light quark $(am_l = 0.005, M_5 = 1.8, L_s = 16)$
- two different heavy-quark masses with $am_h = 0.58$ and $am_h = 0.64$ using a stout-smeared action ($\rho = 0.1, N = 3$) with $M_5 = 1.0, L_s = 12$ and Moebius-scale = 2 [arxiv:1812.08791]

current level of statistics:

- 2 configurations
- 16 solves on each config
- 4 different $\Delta T = 12, 16, 20, 24$
- all lattice momenta up to $n^2 = 4$

V^0 , $\Delta T = 16$, $m_h = 0.58$

V^{i} , $\Delta T = 16$, $m_{h} = 0.58$

V^0 , comparison of ΔT (pp channel), $m_h = 0.58$

V^i , comparison of ΔT (pp channel), $m_h = 0.58$

Z_2 noise with sequential solves

- Z_2 noise at source
- exploit γ_5 hermiticity for q_i quark
- compute $q_{\rm spec}$ quark line
- sequential solve on $q_{
 m spec}$ quark line
- \Rightarrow 1 inversion for each \vec{p} , $\Gamma_{
 m snk}$, ΔT

Z_2 noise with sequential solves

- Z₂ noise at source
- exploit γ_5 hermiticity for q_i quark
- compute $q_{\rm spec}$ quark line
- sequential solve on $q_{
 m spec}$ quark line
- \Rightarrow 1 inversion for each \vec{p} , $\Gamma_{
 m snk}$, ΔT

current level of statistics:

- 21 configurations
- 2 solves on each config
- 3 different $\Delta T = 12, 16, 20$
- one lattice momentum each up to $n^2 = 5$

V^0 , comparison of ΔT (pp channel)

V^i , comparison of ΔT (pp channel)

cost of production per configuration

Presented here: $q_{\text{spec}} = I$, $q_f = I$, $q_i = h_{1,2,...}$

	Distillation	Z_2 seq.
$\#$ Inv / conf / $t_{ m src}$	$N_{vec} imes 4$	$N_{\Delta T} \times N_{\vec{p}} \times N_{\Gamma_{\mathrm{snk}}}$
total #Inv	7680	1008

 $\Rightarrow \approx$ factor 8 in inversion cost for Distillation, plus non-negligible cost for meson fields (another factor 2-3)

• \approx factor 2-6 error reduction in Distillation, depending on p and $\Gamma_{\rm op}$ \Rightarrow no clear winner

Possible setup we are interested in:

 $D \rightarrow \pi$, $D \rightarrow K$, $D_s \rightarrow K$, $D_{(s)} \rightarrow D'_{(s)}$: $q_{\text{spec}} = l, s, q_f = l, s, h, q_i = h_{1,2,\dots}$

	Distillation	Z_2 seq.
$\#$ Inv / conf / $t_{ m src}$	$N_{vec} \times 4$	$N_{\Delta T} imes N_{ec{ ho}} imes N_{\Gamma_{ m snk}} imes \#\{q_{ m spec}, q_f\}$
total #Inv	unchanged	increased by factor $pprox$ 5

 \Rightarrow Cost of Distillation might pay off

Conclusions & Outlook

Conclusions:

- computed 2pt-functions and 3pt-functions to study heavy-light semileptonics using the newly implented distillaton code in Grid and Hadrons
- Distillation is expensive, but has several advantages:
 - different momenta and $\Gamma_{\rm snk}$ are free
 - smearing automatically implemented
 - perambulators (inversions) can be re-used for other projects

Outlook:

- we want to study $D \to \pi$, $D \to K$, $D_s \to K$, $D_{(s)} \to D'_{(s)}$ with larger statistics on the 24³ ensemble
- Some interesting RBC-UKQCD ensembles in production at the moment (2.8GeV at the physical point) [Thu, 14:00, Robert Mawhinney]

Longer-term goal:

 use ensembles with smaller lattice spacing to extrapolate to physical B

Thank you!

using γ_5 hermiticity we can invert some of the quark lines and can write, using meson fields

$$C = M_{\Gamma_{op}}(\bar{\phi}_{t_{src}}, \phi_{t_{snk}}, t) M_{\Gamma_{src}}(\varphi_{t_{snk}}, \varrho, t_{src}) M_{\Gamma_{snk}}(\bar{\varrho}, \varrho, t_{snk}),$$

Distillation

$$C = M_{\Gamma_{op}}(\bar{\phi}_{t_{src}}, \phi_{t_{snk}}, t) M_{\Gamma_{src}}(\varphi_{t_{snk}}, \varrho, t_{src}) M_{\Gamma_{snk}}(\bar{\varrho}, \varrho, t_{snk}),$$

where

$$\varrho_{a\alpha}^{[n,d]}(\vec{x},t) = \sum_{k,l,t',\beta} \mathsf{v}_{ka}(\vec{x};t) \mathsf{P}_{k\alpha,l\beta}^{[d]}(t,t') \rho_{l\beta}^{[n]}(t') \,,$$

$$\phi_{t,a\alpha}^{[n,d]}(\vec{x}',t') = \sum_{a,b,\beta,t,\vec{x}} D_{a\alpha,b\beta}^{-1}(\vec{x}',t';\vec{x},t) \varrho_{b\beta}^{[n,d]}(\vec{x},t),$$

$$\tau_{t,k\alpha}^{[n,d]}(t') = \sum_{\mathbf{a},\mathbf{b},\beta,\mathbf{t},\vec{x}',\vec{x}} v_{\mathbf{k}\mathbf{a}}(\vec{x}';t')^{\dagger} \phi_{t,\mathbf{a}\alpha}^{[n,d]}(\vec{x}',t'),$$

$$\varphi_{t,a\alpha}^{[n,d]}(\vec{x},t) = \sum_{k} v_{ka}(\vec{x};t) \tau_{k\alpha}^{[n,d]}(t) \,.$$

$$\begin{split} \mathcal{M}_{\Gamma}^{[n_1,d_1;n_2,d_2]}(\varphi_q,\varrho_{q'},t,\vec{p}) \\ &= \sum_{\vec{x},a,\alpha,\beta} e^{-i\vec{p}\cdot\vec{x}}(\varphi_q)_{a\alpha}^{[n_1,d_1]}(\vec{x},t)\Gamma_{\alpha\beta}(\varrho_{q'})_{a\beta}^{[n_2,d_2]}(\vec{x},t) \,. \end{split}$$

$$q^{2} = (E_{D} - E_{\pi})^{2} - (\mathbf{p}_{D} - \mathbf{p}_{\pi})^{2}$$

= $m_{D}^{2} + \mathbf{p}_{D}^{2} + m_{\pi}^{2} + \mathbf{p}_{\pi}^{2} - 2\sqrt{m_{D}^{2} + \mathbf{p}_{D}^{2}}\sqrt{m_{\pi}^{2} + \mathbf{p}_{\pi}^{2}} - (\mathbf{p}_{D} - \mathbf{p}_{\pi})^{2}$
$$\mathbf{p}_{\max}^{2} = 4$$

$$q^{2} = (E_{D} - E_{\pi})^{2} - (\mathbf{p}_{D} - \mathbf{p}_{\pi})^{2}$$

= $m_{D}^{2} + \mathbf{p}_{D}^{2} + m_{\pi}^{2} + \mathbf{p}_{\pi}^{2} - 2\sqrt{m_{D}^{2} + \mathbf{p}_{D}^{2}}\sqrt{m_{\pi}^{2} + \mathbf{p}_{\pi}^{2}} - (\mathbf{p}_{D} - \mathbf{p}_{\pi})^{2}$
$$\mathbf{p}_{\max}^{2} = 4$$

V^0 , $\Delta T = 16$, $m_h = 0.64$

V^{i} , $\Delta T = 16$, $m_{h} = 0.64$

V^0 , comparison of ΔT (pp channel), $m_h = 0.64$

V^i , comparison of ΔT (pp channel), $m_h = 0.64$

$N_{\rm vec}$ comparison, pp

$N_{ m vec}$ comparison, ii

