Semileptonic $\mathrm{D} \rightarrow \mathrm{K}$ decay from full lattice QCD with HISQ

Bipasha Chakraborty

With HPQCD collaboration ：
Christine Davies，Jonna Koponen，G Peter Lepage

Lattice 2019，Wuhan， $18^{\text {th }}$ June， 2019

- Flavour Physics is fertile ground for testing SM with high precision
- The flavour changing weak interactions can be parametrised in terms of the Cabbibo-Kobayashi-Maskawa (CKM) unitary matrix

$$
V_{\mathrm{CKM}}=\left[\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]
$$

$\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9999 \pm 0.0006$

$$
\left|V_{u d}\right|^{2}+\left|V_{c d}\right|^{2}+\left|V_{t d}\right|^{2}=1.000 \pm 0.004
$$

Not so precise -
$\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=1.024 \pm 0.032$.

$$
\left|V_{u s}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{t s}\right|^{2}=1.025 \pm 0.032
$$

Leptonic

Semileptonic

Lattice
Comparison of $\left|V_{C S}\right|$ Error-
Radius proportional to total error

$$
\frac{d \Gamma^{D \rightarrow K}}{d q^{2}}=\frac{G_{F}^{2} p^{3}}{24 \pi^{3}}\left|V_{C S}\right|^{2}\left|f_{+}^{D \rightarrow K}\left(q^{2}\right)\right|^{2}
$$

$$
\begin{aligned}
\left\langle K^{-} l^{+} \nu\right| J_{W}\left|D^{0}\right\rangle= & \frac{G_{F}}{\sqrt{2}} V_{c s} \bar{v}(l) \gamma_{\mu}\left(1-\gamma_{5}\right) u(\nu) \\
& \left\langle K^{-}\right| \bar{\psi}_{s} \gamma_{\mu}\left(1-\gamma_{5}\right) \psi_{c}\left|D^{0}\right\rangle .
\end{aligned}
$$

$$
\left\langle H_{\mu}\right\rangle=\left\langle K^{-}\right| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) c\left|D^{0}\right\rangle
$$

- Only vector current would contribute here
- Calculate this matrix from lattice QCD

Lattice formalism

$$
\begin{aligned}
Z_{V, t} \times\left\langle K^{-}\right| V^{\mu}\left|D^{0}\right\rangle= & f_{+}^{D \rightarrow K}\left(q^{2}\right)\left[p_{D}^{\mu}+p_{K}^{\mu}-\frac{M_{D}^{2}-M_{K}^{2}}{q^{2}} q^{\mu}\right] \\
& +f_{0}^{D \rightarrow K}\left(q^{2}\right) \frac{M_{D}^{2}-M_{K}^{2}}{q^{2}} q^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
\langle K| V^{\mu}|D\rangle= & f_{+}^{D \rightarrow K}\left(q^{2}\right)\left[p_{D}^{\mu}+p_{K}^{\mu}-\frac{M_{D}^{2}-M_{K}^{2}}{q^{2}} q^{\mu}\right] \\
& +f_{0}^{D \rightarrow K}\left(q^{2}\right) \frac{M_{D}^{2}-M_{K}^{2}}{q^{2}} q^{\mu} \rightarrow f_{0}(0)=f_{+}(0)
\end{aligned}
$$

$$
\langle K| S|D\rangle=f_{0}^{D \rightarrow K}\left(q^{2}\right) \frac{M_{D}^{2}-M_{K}^{2}}{m_{0_{c}}-m_{0_{s}}}
$$

$$
q^{\mu}=p_{D}^{\mu}-p_{K}^{\mu}
$$

$$
q^{2}=q_{\max }^{2}=\left(M_{D}-M_{K}\right)^{2}:
$$

$Z_{V, t} \times\left\langle K^{-}\right| V^{0}\left|D^{0}\right\rangle=f_{+}^{D \rightarrow K}\left(q^{2}\right)\left[M_{D}+M_{K}-\left(M_{D}+M_{K}\right)\right]$

$$
\begin{aligned}
& +f_{0}^{D \rightarrow K}\left(q^{2}\right)\left(M_{D}+M_{K}\right) \\
= & \left(M_{D}+M_{K}\right) \times f_{0}^{D \rightarrow K}\left(q_{\max }^{2}\right)
\end{aligned}
$$

Extract
>Local temporal vector current
> Non-goldstone D meson for that - local $\boldsymbol{\gamma}_{0} \boldsymbol{\gamma}_{5}$

> "Sequential technique" for three-points correlators

Analysis Ingredients

MILC configurations: up/down, strange, charm quarks in the sea: $m_{u}=m_{d}$
\square Physical $m_{u / d} \square$ Three lattice spacings from 0.09-0.15 fm
\square Valence strange and charm quark masses tuned accurately

Random wall sources:

Twisted boundary Conditions:

$$
\psi\left(p+L_{\mu} \hat{\mu}\right)=e^{i \theta_{\mu}} \psi(p)
$$

High statistics:
1,000 configurations,
4-16 time sources

$$
\eta\left(i_{t}\right)= \begin{cases}e^{i \theta} & \text { for } i_{t}=t_{0} \\ 0 & \text { for } i_{t} \neq t_{0} .\end{cases}
$$

$$
\left\langle\eta^{\dagger}\left(i^{\prime}\right) \eta(i)\right\rangle=\delta_{i i^{\prime}}
$$

Multi-exponential Bayesian fitting

$$
\begin{aligned}
G^{2 \mathrm{pt}}(t ; \vec{p})= & \sum_{n} a_{n}^{2}\left(e^{-E_{n} t}+e^{-E_{n}(T-t)}\right) \\
& +(-1)^{t} \sum_{n_{o}} a_{n_{o}}^{2}\left(e^{-E_{n_{o}} t}+e^{-E_{n_{o}}(T-t)}\right) \\
G^{3 \mathrm{pt}}(t ; T)= & \sum_{n_{1}, n_{2}} a_{n_{1}} a_{n_{2}} V_{n_{1} n_{2}}^{n n}\left(e^{-E_{n_{1}} t}+e^{-E_{n_{2}}(T-t)}\right) \\
& +(-1)^{t} \sum_{n_{1} o, n_{2}} a_{n_{1} o} a_{n_{2}} V_{n_{1} o n_{2}}^{o n}\left(e^{-E_{n_{1} o} t}+e^{-E_{n_{2}}(T-t)}\right) \\
& +(-1)^{T} \sum_{n_{1}, n_{2} o} a_{n_{1}} a_{n_{2} o} V_{n_{1} n_{2} o}^{n o}\left(e^{-E_{n_{1}} t}+e^{-E_{n_{2} o}(T-t)}\right) \\
& +(-1)^{t+T} \sum_{n_{1} o, n_{2} o} a_{n_{1} o} a_{n_{2} o} V_{n_{1} o n_{2} o}^{o o}\left(e^{-E_{n_{1} o} t}+e^{-E_{n_{2} o}(T-t)}\right)
\end{aligned}
$$

Check 1: Stability of the fits with multiple exponentials

Check 2: Mass difference: Goldstone and non-goldstone D mesons

Check 3 : Relativistic dispersion relation on lattice

$$
c^{2}(\vec{p})=\frac{E_{K}^{2}(\vec{p})-M_{K}^{2}}{\vec{p}^{2}}
$$

Z-expansion

poles and cut

$$
\text { region } \quad t_{ \pm}=\left(m_{D} \pm m_{K}\right)^{2}
$$

$$
\begin{aligned}
f\left(q^{2}\right)=\frac{1}{P\left(q^{2}\right) \Phi\left(q^{2}\right)} \sum_{n=0}^{N} b_{n} z^{n} \\
b_{n}\left(a, m_{l}\right)=A_{n} \underbrace{1+B_{n} a^{2}+C_{n} a^{4}}+D_{n} \delta_{l} \\
\left.+E_{n}\left(\delta_{l} \ln \left[\delta_{l}\right]+F_{n} a^{2} \delta_{l}\right)\right\}
\end{aligned}
$$

Shape of the form factors: $D \rightarrow$ Klv

Shape of the form factors: $D \rightarrow K / v$

Converting back to 'q ' space

$$
z=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
$$

$$
t_{0}=t_{+}\left(1-\left(1-t_{-} / t_{+} 0\right)^{1 / 2}\right)
$$

Preliminary

ETMC:
Phys. Rev. D96, 054514
MILC/Fermilab:
PoS LATTICE2016 (2017) 305
JLQCD:
arXiv:1701.00942

- Ratio : Expt/Lattice
- Looking for bin-to-bin correlation
- Extracting V_{CS} from fitting all bins

Thank you

