Lattice study on the twisted CPN-1 model on R x S1

Tatsuhiro Misumi Akita U. / Keio U.

Toshiaki Fujimori Etsuko Itou Muneto Nitta Norisuke Sakai Keio U. Keio U. / Kochi U. / RCNP Keio U. Keio U.

06/18/2019@Lattice2019,Wuhan

CP^{N-1} sigma model

2D CP^{N-1} model is not only a toy model of QCD, but also effectively describes gauge theory !

- Effective theory on vortex in U(N) + Higgs model is CPN-1 Eto, et.al.(05)
- Effective theory on long strings in YM is CPN-1 Aharony, Komargodski(13)
- It is also notable that CPI describes spin chain systems Haldane(83)

Lattice study on CP^{N-1} model is of physical significance

CPN-I sigma model on R x SI

- Global symmetry : PSU(N) flavor symmetry + Time reversal
- Z_N symmetry is not exact for periodic b. c. (cf. QCD)

Resurgent structure in QM and QFT

$$\mathcal{S}_+\Phi_0(z) - \mathcal{S}_-\Phi_0(z) \approx \mathfrak{s}e^{-Az}\mathcal{S}\Phi_1(z)$$

Perturbative imaginary ambiguity Non-perturbative effect $z = \frac{1}{q^2}$

Resurgent structure is expected to be in quantum theory, thus perturbative series could include nonpert. information !

Zinn-Justin(01), Marino(07) Marino, Schiappa, Weiss(09), Argyres, Unsal(12), Dunne, Unsal(12)

In a certain class of QFT as twisted CP^{N-1} models QFT can be defined based on the structure.

Main questions

 \bullet Question 2 : Continuity and fractional instantons for Z_N -tbc

- Fractional instantons yield transition between classical N-vacua
- makes Z_N stable, leading to volume indep. of vacuum structure

Dunne, Unsal(12) Sulejmanpasic(16)

$$|| \sim 0$$
 for small $\beta \xrightarrow{?}$ still $|| \sim 0$ for large β

We will show quite suggestive results on fractional instantons and adiabatic continuity

Setup of lattice simulation

cf.) Berg,Luscher(81), Campostrini,et.al.(92), Alles, et.al.(00), Flynn, et.al.(15), Abe, et.al.(18)

• Lattice formulation $S = -N\beta \sum_{n,\mu} \left(\bar{z}_{n+\mu} \cdot z_n \lambda_{n,\mu} + \bar{z}_n \cdot z_{n+\mu} \bar{\lambda}_{n,\mu} - 2 \right)$

Vector field Φ is introduced: $\phi_{2j} = \Re[z_{n,j}], \quad \phi_{2j+1} = \Im[z_{n,j}], \quad j = 0, \cdots, N-1$ $\phi_{\mu}^{R} = \Re[\lambda_{\mu}], \quad \phi_{\mu}^{I} = \Im[\lambda_{n,\mu}],$

 $s_{\phi} = -N\beta\phi \cdot F_{\phi} = -N\beta|F_{\phi}|\cos\theta \quad \text{updated just by updating }\theta$

Over heat-bath algorithm is adopted to update this θ

Parameters and quantities

 $N_x = 40-400$, $N_\tau = 8,12$, $\beta = 0.1-4.0$, N = 3-20, $N_{\text{sweep}} = 200000,400000$

- Expectation values of Polyakov loop and its susceptibility
- Thermal entropy $s = \beta(N\tau)^2(\langle T_{xx} \rangle \langle T_{\tau\tau} \rangle)$

(1) Z_N transition(pbc) (2) Z_N continuity(tbc) (3)Thermal entropy

Polyakov-loop of CP^{N-1} models on R x S¹ with pbc.

N=3,5,10,20 (Nx,Nt) = (200,8) Nsweep = 200,000

Note that Z_N symmetry is not exact for PBC

VEV of Polyakov loop |<P>|

• $|\langle P \rangle| \sim 0$ at low β , then $|\langle P \rangle|$ undergoes crossover-like transition

• Peak of Polyakov-loop susceptibility χ gets sharper with N

Crossover transition for finite N is checked, which would be 2nd-order phase transition for large N limit

Volume dependence of \chi-peak

 $\chi_{\max} = c + aV^p \qquad p=1:1st, \quad 0$

- Volume dependence of the peak is not linear \rightarrow not 1st-order
- χ for N=20 is larger than that for N=10 \rightarrow 2nd-order in large N?

it supports crossover transition for finite N (2nd-order in large-N)

Polyakov loop of CP^{N-1} models on R x S¹ with Z_N tbc.

N=3,5,10,20 (Nx,Nt) = (200, 8), (400,12) Nsweep=200000, 400000

Low- β : around the origin \rightarrow Z_N symmetry at the action level Intermediate- β : Transition between N vacua \rightarrow quantum Z_N symmetry

Low- β : around the origin \rightarrow Z_N symmetry at the action level High- β : One of Z_N vacua selected \rightarrow SSB of Z_N symmetry....?

Low- β : around the origin \rightarrow Z_N symmetry at the action level

High- β : One of Z_N vacua selected \rightarrow SSB of Z_N symmetry....?

Low- β : around the origin \rightarrow Z_N symmetry at the action level

High- β : One of Z_N vacua selected \rightarrow SSB of Z_N symmetry....?

VEV of Polyakov loop |<P>|

• Low $\beta \rightarrow |\langle P \rangle| = 0$: distribution around origin

- Mid $\beta \rightarrow |\langle P \rangle|$ highly fluctuates : distribution forms polygons
- High $\beta \rightarrow$ suddenly gets $|\langle P \rangle| \neq 0$: but more stat. can form polygon

- Low $\beta \rightarrow |\langle P \rangle| = 0$: distribution around origin
- Mid $\beta \rightarrow |\langle P \rangle|$ highly fluctuates : distribution forms polygons
- High $\beta \rightarrow$ suddenly gets $|\langle P \rangle| \neq 0$: but more stat. can form polygon

- Low $\beta \rightarrow |\langle P \rangle| = 0$: distribution around origin
- Mid $\beta \rightarrow |\langle P \rangle|$ highly fluctuates : distribution forms polygons
- High $\beta \rightarrow$ suddenly gets $|\langle P \rangle| \neq 0$: but more stat. can form polygon

- Low $\beta \rightarrow |\langle P \rangle| = 0$: distribution around origin
- Mid $\beta \rightarrow |\langle P \rangle|$ highly fluctuates : distribution forms polygons
- High $\beta \rightarrow$ suddenly gets $|\langle P \rangle| \neq 0$: but more stat. can form polygon

Polygon-shaped distributions of Polyakov loop (|<P>|~0) appear more often with more statistics

It may indicate Z_N stability (continuity).... Furthermore,

Distribution plot of P-loop (very high β, large volume)

Independent configurations for very high β (β =4.0) with large volume include a quantum Z_N symmetric case as below !

Very high- β : quantum Z_N symmetric case found with certain probability it seems we need larger volume or more statistics for Z_N continuity....

Pick up two of configurations and look into the x-dependence of arg[P]

implies fractional instantons cause transition between classical vacua at high β , which lead to quantum Z_N symmetry and could yield adiabatic continuity

Pick up two of configurations and look into the x-dependence of arg[P]

implies fractional instantons cause transition between classical vacua at high β , which lead to quantum Z_N symmetry and could yield adiabatic continuity

Pick up two of configurations and look into the x-dependence of arg[P]

implies fractional instantons cause transition between classical vacua at high β , which lead to quantum Z_N symmetry and could yield adiabatic continuity

* we are on the way of calculating topological charge density directly.

Thermal entropy for pbc and Z_N tbc.

N=3,5,10,20 (Nx,Nt) = (200, 8) Nsweep=200000, 400000

Question 3 :Thermal entropy

Free energy of CP[∞] and free energy of free scalar for Monin, Shifman, Yung(15) small L also indicate

$$s = \beta N_{\tau}^2 (\langle T_{xx} \rangle - \langle T_{\tau\tau} \rangle) = \frac{2\pi (N-1)}{3N}$$

We will check thermal entropy for large β (small L)

Thermal entropy for pbc

- Thermal entropy is in agreement with the analytical prediction.
- This is also consistent with the prediction from YM+Higgs model. Monin, Shifman, Yung(15)

Our numerical results successfully confirm the predicted thermal entropy

Thermal entropy for tbc

- Thermal entropy behaves I/N smaller than that of PBC.
- This observation should be checked analytically.

Prediction from numerical study which should be reproduced analytically

Summary

- Lattice simulation of CPN-1 model on R x S1
- $\cdot Z_N$ crossover transition is confirmed for pbc
- Thermal entropy agrees with the prediction for pbc
- Characteristic β dependence of P-loop for tbc, which inspires more study on adiabatic continuity
- A pivotal role of fractional instantons is implied for tbc