Lattice study on the twisted \mathbb{CP}^{N-1} model on $\mathbb{R} \times S^1$

Tatsuhiro Misumi Akita U. / Keio U.
Toshiaki Fujimori Keio U.
Etsuko Itou Keio U. / Kochi U. / RCNP
Muneto Nitta Keio U.
Norisuke Sakai Keio U.

06/18/2019@Lattice2019, Wuhan
\textbf{CP}^{N-1} \text{ sigma model}

\textit{2D CP}^{N-1} \text{ model is not only a toy model of QCD, but also effectively describes gauge theory!}

- Effective theory on vortex in U(N) + Higgs model is CP$^{N-1}$ Eto, et.al.(05)
- Effective theory on long strings in YM is CP$^{N-1}$ Aharony, Komargodski(13)
- It is also notable that CP1 describes spin chain systems Haldane(83)

Lattice study on CP$^{N-1}$ model is of physical significance

\textbf{Lagrangian of CP}^{N-1} \text{ models}

\[
S = \frac{1}{2g^2} \int |D\phi|^2 \quad |\phi|^2 = 1, \quad D\phi = (d + ia)\phi, \quad a = i\bar{\phi} \cdot d\phi
\]

\text{discretized on the lattice}

\[
S = -N\beta \sum_{n,\mu} \left(\bar{z}_{n+\mu} \cdot z_n \lambda_{n,\mu} + \bar{z}_n \cdot z_{n+\mu} \bar{\lambda}_{n,\mu} - 2 \right)
\]
CP^{N-1} sigma model on R x S^1

- Global symmetry : PSU(N) flavor symmetry + Time reversal
- Z_N symmetry is not exact for periodic b. c. (cf. QCD)

- Z_N-twisted b. c.
 \[\phi(x_1, x_2 + L) = \Omega \phi(x_1, x_2) \quad \Omega = \text{diag.} \left[1, e^{2\pi i/N}, e^{4\pi i/N}, \ldots, e^{2(N-1)\pi i/N} \right] \]

Exact Z_N-symmetric model
- Z_N flavor shift + Z_N center
 (irrelevant with decompactifying)

- Fractional instantons (Q=1/N, S=S_i/N)
 - BPS eq. \[D\phi \pm i \star D\phi = 0 \]
 - BPS sol. \[\phi = \frac{(1, e^{z-z_0}, \ldots)}{\sqrt{1 + |e^{z-z_0}|^2}} \]
 - cf. $N=2$

*It is shown to have resurgent structure (pert. vs non-pert. relation)

- Lee, Yi(97) Kraan, van Baal(97) Eto, et.al. (04~) Bruckmann, et.al. (05~)

- Distribution of P-loop for N=5

Notes:
- For a fixed topological charge, the minimal action is given by the (anti-)BPS derivative, and
- The model is defined by D_124, component complex fields with D_125.
- The fractional instantons ($Q=1/N, S=S_i$) correspond to the vacuum with the gauge symmetry breaking ω_i.
- The Wilson-loop holonomy in the compactified direction is given by $\frac{\sqrt{N}}{N}$ after $I=0$(a)
- The action and charge with the factor $\frac{1}{N}$ after $I=0$(b)
- Z_N is symmetric model and reduced sine-Gordon model.
- The first and second homotopy groups for instantons in the sine-Gordon model and reduced sine-Gordon model.
- The configuration in $I=0$ (c) Z_N twisted boundary conditions in a compactified space.
- The configuration in $I=0$ (d) Z_N twisted boundary conditions.
- The configuration in $I=0$ (e) Z_N twisted boundary conditions.
- Exact Z_N-symmetric model Z_N flavor shift + Z_N center (irrelevant with decompactifying)
- Fractional instantons ($Q=1/N, S=S_i/N$)
- BPS eq. $D\phi \pm i \star D\phi = 0$
- BPS sol. $\phi = \frac{(1, e^{z-z_0}, \ldots)}{\sqrt{1 + |e^{z-z_0}|^2}}$
- cf. $N=2$
- It is shown to have resurgent structure (pert. vs non-pert. relation)
Resurgent structure in QM and QFT

\[S_+ \Phi_0(z) - S_- \Phi_0(z) \approx 5 e^{-Az} S \Phi_1(z) \]

Perturbative imaginary ambiguity Non-perturbative effect

Resurgent structure is expected to be in quantum theory, thus perturbative series could include nonpert. information!

Zinn-Justin(01), Marino(07) Marino, Schiappa, Weiss(09), Argyres,Unsal(12), Dunne, Unsal(12)

In a certain class of QFT as twisted CP^{N-1} models QFT can be defined based on the structure.
Main questions

Question 1: \mathbb{Z}_N (phase) transition for pbc
- 2nd-order phase transition expected in large-N
- it should be crossover for finite N since \mathbb{Z}_N

$\langle P \rangle \sim 0$ for small β \Rightarrow $\langle P \rangle \neq 0$ for large β

We will check it directly in numerical study

Question 2: Continuity and fractional instantons for \mathbb{Z}_N-tbc
- Fractional instantons yield transition between classical N-vacua
- makes \mathbb{Z}_N stable, leading to volume indep. of vacuum structure

$\langle P \rangle \sim 0$ for small β \Rightarrow still $\langle P \rangle \sim 0$ for large β

We will show quite suggestive results on fractional instantons and adiabatic continuity
Setup of lattice simulation

cf.) Berg,Luscher(81), Campostrini,et.al.(92), Alles,et.al.(00), Flynn,et.al.(15), Abe,et.al.(18)

• Lattice formulation
 \[S = -N\beta \sum_{n,\mu} \left(\bar{z}_{n+\mu} \cdot z_n \lambda_{n,\mu} + \bar{z}_n \cdot z_{n+\mu} \bar{\lambda}_{n,\mu} - 2 \right) \]

Vector field \(\Phi \) is introduced:
\[\phi_{2j} = \Re[z_{n,j}], \quad \phi_{2j+1} = \Im[z_{n,j}], \quad j = 0, \ldots, N - 1 \]
\[\phi^R_\mu = \Re[\lambda_\mu], \quad \phi^I_\mu = \Im[\lambda_\mu], \]

\[s_\phi = -N\beta \phi \cdot F_\phi = -N\beta |F_\phi| \cos \theta \quad \text{updated just by updating } \theta \]

Over heat-bath algorithm is adopted to update this \(\theta \)

• Parameters and quantities
 \(N_x = 40-400, \quad N_\tau = 8,12, \quad \beta = 0.1-4.0, \quad N = 3-20, \quad N_{\text{sweep}} = 200000,400000 \)

 • Expectation values of Polyakov loop and its susceptibility

 • Thermal entropy \(s = \beta(N\tau)^2(<T_{xx}> - <T_{\tau\tau}>) \)

(1)\(Z_N \) transition(pbc) (2)\(Z_N \) continuity(tbc) (3)Thermal entropy
Polyakov-loop of $\mathbb{C}P^{N-1}$ models on $\mathbb{R} \times S^1$ with pbc.

$N=3,5,10,20$ \hspace{1cm} (Nx,Nt) = (200, 8) \hspace{1cm} N\text{sweep} = 200,000$
Low-β : around the origin
→ approximate Z_N symmetry

High-β : moves to one of Z_N vacua
→ Z_N breaking transition

Note that Z_N symmetry is not exact for PBC
VEV of Polyakov loop $|<P>|$

- $|<P>| \sim 0$ at low β, then $|<P>|$ undergoes crossover-like transition
- Peak of Polyakov-loop susceptibility χ gets sharper with N

Crossover transition for finite N is checked, which would be 2nd-order phase transition for large N limit
Volume dependence of χ-peak

$\chi\langle |P| \rangle$

$\chi_{\text{max}} = c + aV^p$

$p=1 : 1\text{st}, \quad 0<p<1: 2\text{nd or crossover}$

• Volume dependence of the peak is not linear \rightarrow not 1st-order
• χ for $N=20$ is larger than that for $N=10$ \rightarrow 2nd-order in large N? it supports crossover transition for finite N (2nd-order in large-N)

Fukugita, et al. (90)
Polyakov loop of \mathbb{CP}^{N-1} models on $\mathbb{R} \times S^1$ with \mathbb{Z}_N tbc.

$N=3,5,10,20$ $(N_x,N_t) = (200, 8), (400, 12)$ $N_{\text{sweep}}=200000, 400000$
Low-β: around the origin → Z_N symmetry at the action level

Intermediate-β: Transition between N vacua → quantum Z_N symmetry
Distribution plot of P-loop

\[\text{Im}[P] \quad N=3, \beta=0.1 \]

\[\begin{align*}
|\langle P \rangle| & \sim 0 \\
\end{align*} \]

\[\begin{align*}
\text{Re}[P] \\
\end{align*} \]

\[\begin{align*}
\text{Low-}\beta : \text{around the origin} \rightarrow \\
\text{Z}_N \text{ symmetry at the action level} \\
\end{align*} \]

\[\begin{align*}
\text{N}=3, \beta=1.8 \\
|\langle P \rangle| \neq 0 \\
\end{align*} \]

\[\begin{align*}
\text{High-}\beta : \text{One of Z}_N \text{ vacua selected} \rightarrow \text{SSB of Z}_N \text{ symmetry}....? \\
\end{align*} \]
Low-β: around the origin \rightarrow Z_N symmetry at the action level

High-β: One of Z_N vacua selected \rightarrow SSB of Z_N symmetry...?
Distribution plot of P-loop

|<P>| \sim 0

Low-\(\beta\) : around the origin \rightarrow Z\(_N\) symmetry at the action level

|<P>| \neq 0

High-\(\beta\) : One of Z\(_N\) vacua selected \rightarrow SSB of Z\(_N\) symmetry….?
VEV of Polyakov loop $|\langle P \rangle|$

- Low $\beta \rightarrow |\langle P \rangle| = 0$: distribution around origin
- Mid $\beta \rightarrow |\langle P \rangle|$ highly fluctuates: distribution forms polygons
- High $\beta \rightarrow$ suddenly gets $|\langle P \rangle| \neq 0$: but more stat. can form polygon

This peculiar P-loop could imply something special (Z_N stability?). We still need larger volume or more statistics to judge continuity.
VEV of Polyakov loop $|<P>|$

- Low $\beta \rightarrow |<P>|=0$: distribution around origin
- Mid $\beta \rightarrow |<P>|$ highly fluctuates: distribution forms polygons
- High $\beta \rightarrow$ suddenly gets $|<P>|\neq0$: but more stat. can form polygon

This peculiar P-loop could imply something special (Z_N stability?). We still need larger volume or more statistics to judge continuity.
VEV of Polyakov loop $|\langle P \rangle|$

- **Low** $\beta \rightarrow |\langle P \rangle| = 0$: distribution around origin
- **Mid** $\beta \rightarrow |\langle P \rangle|$ highly fluctuates: distribution forms **polygons**
- **High** $\beta \rightarrow$ suddenly gets $|\langle P \rangle| \neq 0$: but more stat. can form polygon

This peculiar P-loop could imply something special (Z_N stability?). We still need larger volume or more statistics to judge continuity.
VEV of Polyakov loop $|\langle P \rangle|$

$N=10$

$N=20$

- Low $\beta \rightarrow |\langle P \rangle|=0$: distribution around origin
- Mid $\beta \rightarrow |\langle P \rangle|$ highly fluctuates: distribution forms polygons
- High $\beta \rightarrow$ suddenly gets $|\langle P \rangle|\neq 0$: but more stat. can form polygon

This peculiar P-loop could imply something special (Z_N stability?). We still need larger volume or more statistics to judge continuity.
Polygon-shaped distributions of Polyakov loop ($|\langle P \rangle| \sim 0$) appear more often with more statistics.

It may indicate Z_N stability (continuity)....

Furthermore,
Distribution plot of P-loop (very high β, large volume)

Independent configurations for very high β ($\beta=4.0$) with large volume include a quantum Z_N symmetric case as below!

Im[P] $N=3$, $\beta=4.0$, (400\times12)

|\langle P\rangle| \sim small

Re[P]

Hysteresis of arg[P]

Any of Z_N vacua is not selected

Very high-β : quantum Z_N symmetric case found with certain probability

it seems we need larger volume or more statistics for Z_N continuity....
Fractional instantons

Pick up two of configurations and look into the x-dependence of $\text{arg}[P]$

$\frac{1}{3}$ fractional antiinstanton $+ \frac{1}{3}$ fractional instanton $= \text{bion}$

$3 \times \frac{1}{3}$ fractional instantons $= \text{instanton}$

implies fractional instantons cause transition between classical vacua at high β, which lead to quantum Z_N symmetry and could yield adiabatic continuity
Fractional instantons

Pick up two of configurations and look into the x-dependence of arg[P]

\[
\text{arg}[P]
\]

1/3 fractional antiinstanton + 1/3 fractional instanton = bion

3 × 1/3 fractional instantons = instanton

implies fractional instantons cause transition between classical vacua at high \(\beta \), which lead to quantum \(Z_N \) symmetry and could yield adiabatic continuity
Fractional instantons

Pick up two of configurations and look into the x-dependence of \(\arg[P] \)

\[
\frac{1}{3} \text{ fractional antiinstanton} + \frac{1}{3} \text{ fractional instanton} = \text{ bion}
\]

implies fractional instantons cause transition between classical vacua at high \(\beta \), which lead to quantum \(Z_N \) symmetry and could yield adiabatic continuity

* we are on the way of calculating topological charge density directly.
Fractional instantons
Thermal entropy for pbc and Z_N tbc.

$N=3,5,10,20$ \hspace{1cm} (Nx,Nt) = (200, 8) \hspace{1cm} N_{\text{sweep}}=200000, 400000$

◆ Question 3 : Thermal entropy

- Free energy of \mathbb{CP}^∞ and free energy of free scalar for small L also indicate

$$s = \beta N^2_\tau (\langle T_{xx} \rangle - \langle T_{\tau\tau} \rangle) = \frac{2\pi(N - 1)}{3N}$$

We will check thermal entropy for large β (small L)

Monin, Shifman, Yung (15)
Thermal entropy is in agreement with the analytical prediction.

This is also consistent with the prediction from YM+Higgs model.

Our numerical results successfully confirm the predicted thermal entropy.
Thermal entropy for tbc

\[\beta (N \tau)^2 (<T_{xx}> - <T_{\tau \tau}>) \]

- Thermal entropy behaves 1/N smaller than that of PBC.
- This observation should be checked analytically.

Prediction from numerical study which should be reproduced analytically.
Summary

- Lattice simulation of CP^{N-1} model on $\mathbb{R} \times S^1$
- \mathbb{Z}_N crossover transition is confirmed for pbc
- Thermal entropy agrees with the prediction for pbc
- Characteristic β dependence of P-loop for tbc, which inspires more study on adiabatic continuity
- A pivotal role of fractional instantons is implied for tbc