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The 1+1 dimensional Thirring model  
and its duality to the sine-Gordon model
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I. INTRODUCTION
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strong-weak duality

Works in the zero-charge sector

Quantities Thirring sine-Gordon XY

vector current  ̄�
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Table 2: Correspondence between the massive Thirring model, sine-Gordon
model and the classical XY model.

4 Tensor Network methods

4.1 Singular Value Decomposition (SVD)

4.2 Matrix Product States (MPS)

4.3 Matrix Product Operators (MPO)

4.4 Density Matrix Renormalization Group (DMRG)

5 Preliminaries on the lattice calculation

In this section we will carefully investigate the lattice version of the Hamiltonian,
and the other physical quantities. We will first examine the discretization, and
then write down those quantities in the spin language by the Jordan-Wigner
transformation.

5.1 Staggered fermions in the Hamiltonian formalism

Let’s first consider the staggered fermion in the Hamiltonian formalism. The
di↵erence between the Hamiltonian and action is that the spin diagonalization
must be done in the di↵erent way. This is basically because of the additional
�
0

appeared in the Hamiltonian formalism, while in action �
0

was absorbed as
the part of  ̄.

Let’s look into an example of the free Dirac fermion in two dimensions
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We first compute the conjugate momentum
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Therefore, the Hamiltonian reads to
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And similar power law for

¯  correlators.

The K-T phase transition at T ⇠ K⇡/2 in the XY model.

The phase boundary at t ⇠ 8⇡ in the sine-Gordon theory.

The cosine term becomes relevant or irrelevant.
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Thirring sine-Gordon XY
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RG flows of the Thirring model
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Employing Eq. (7), these β−functions can be rewritten in T and z, leading to

βT ≡ µ
dT

dµ
= −64π

z2

Λ4
,

βz ≡ µ
dz

dµ
=

1− 8πT

4πT
z −

64π

T 2Λ4
z3. (9)

These can be used to obtain the scaling behaviour of the Thirring model,

βg ≡ µ
dg

dµ
= −64π

m2

Λ2
,

βm ≡ µ
dm

dµ
=

−2(g + π
2 )

g + π
m−

256π3

(g + π)2Λ2
m3. (10)

III. DISCUSSION

From Eq. (10), it is clear that the value g = −π/2 plays a crucial role1. When g < −π/2, the RG evolution drives the
renormalised m to zero at low energy. This means m/Λ → 0, and then βg = 0. On the other hand, when g > −π/2,
the renormalised m exhibits the opposite behaviour, and will grow when the theory flows towards the IR limit. This
results in βg = 0, i.e., asymptotic freedom.
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1 As mentioned earlier in this note, g > −π is always required because of unitarity.

Massless Thirring model is a conformal field theory 

mass relevantmass irrelevant
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Thirring sine-Gordon XY

g 4⇡2

t � ⇡ T
K � ⇡

b
l�1 b

l�1

(T )
�l,�

0
l

al�1,al,a
0
l�1,a

0
l

(T )
�lal�1al,�

0
la

0
l�1a

0
l

v
�lal�1al

M
�lal�1,al

G(|a� b|) = hei(✓(a)�✓(b))i (17)

G(r) = A r�T/2⇡K . (18)

G(r) = A0 e�r/⇠. (19)

T
c

⇠ K⇡/2. (20)

g

T

g
c

⇠ �⇡/2. (21)

g $ 

Epair ⇠ log (|r1 � r2|/a)

Sr =

✓
cos✓r
sin✓r

◆
(22)

U
al�1�l,al = A�l

al�1,al

g0 = 0, continuum limit

g0 = g
c

, Coleman’s instability point

g0

am0

g = �⇡

2 , Coleman’s instability point

g

m



Operator formalism and the Hamiltonian
• Operator formaliam of the Thirring model Hamiltonian  
 
 

• Staggering, J-W transformation (                      ):

projected to a sector of total spin

JW-trans of the total fermion number, 
Bosonise to topological index in the SG theory. 
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Practice of finite MPS
One step in a sweep of finite-size DMRG

But even if such a simplification does not occur, it turns out that MPOs with quite small dimensions
and moderate loss of accuracy can be found, either by approximating an arbitrary interaction function
JðrÞ by a sum of exponentials coded as above [71,100], minimizing the L2 distance kJðrÞ #

Pn
i¼1aik

r
i k in

ai; ki, where n is given by the DW and loss of accuracy one is willing to consider. Alternatively [73], one
can of course construct the exact MPO where feasible and compress it by adapting MPS compression
techniques to an acceptable DW (and loss of accuracy).

6.2. Applying a Hamiltonian MPO to a mixed canonical state

Let us consider jwi in the following mixed canonical representation, identical to the single-site
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All the beauty of the MPO formulation seems gone, but a graphical representation restores it (Fig. 38).
It can be understood most easily from the second or third line of the explicit expressions above: the

a -1

σ

σ ´

a ´a -1´

a

L

L

W R

Fig. 38. Representation of the DMRG expression ha‘#1r‘a‘ jbHja0‘#1r0‘a0‘i in MPO/MPS language. The Hamiltonian MPO is
contracted with four block state expansions in MPS form (two bras, two kets, two on block A, two on block B). The contracted
network decouples into parts L;W and R, corresponding to blocks A and B and the center site.

144 U. Schollwöck / Annals of Physics 326 (2011) 96–192

Open BC
Random tensors for the smallest bond dim
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B. Simulation details

describe the simulations in details: choice of parameters (� and a⇥m0, as well as L/a and D). say that
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how we prepare the initial tensors —- no infinite DMRG step, and we start from random values for
the components of the tensors.

In this work, the DMRG runs begin with a randomly-initialized MPS with D = 50. For higher Ds, the initial MPS
is prepared by growing the bond dimension of the previous runs. This can be accomplished by inserting a non-square
identity to each bond of the MPS. We gradually grow the bond dimension until it reaches 600. With several di↵erent
D’s, one can investigate the error of finite D systematically, and extrapolate the physical quantities to the infinite-D
limit. Similarly, we study the finite-size e↵ect with 4 system sizes, N = 400, 600, 800, 1000. The coupling �(g) is
chosen from the range �0.8  �  1.0, with 5 di↵erent masses, m̃0a = 0.0, 0.1, 0.2, 0.3, 0.4. We set � to be 100, and
target at the zero-charge sector by setting S

target

= 0.

In performing the search of the ground state using the DMRG method, we observe that the convergence of the
algorithm is slower in a region of parameter space than that in the rest. This shows that there may be a regime where
the theory becomes critical. Figure 1 shows examples of these fast- and slow-convergence cases. For the slow cases,
not only it takes more swepps for DMRG to converge, the the Jacobi-Davidson solver for obtaining the low eigen
modes of the Hamiltonian is also significantly more time-consuming.

IV. RESULTS FOR THE PHASE STRUCTURE

In this section, we present results that can be employed to probe the non-thermal phase structure of the Thirring
model. As discussed in the Introduction, the dual sine-Gordon model contains a phase where the dynammics is
described by free bosnic field theory with the presence of conformal symmetry, and the relevant phase transition is of
KT-type. We will show, using our numerical results, that this phase transition is realised in the Thirring model.
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FIG. 2. First row: entanglement entropy for m̃0a = 0.0, at �(g) = �0.88 (left) and �(g) = 0.0 (right). Second row:
entanglement entropy for m̃0a = 0.2, at �(g) = �0.88 (left) and �(g) = 0.0 (right).

C. Fermion bilinear condensate

The fermion bilinear condensate,

� = �̂/a = h ̄ i, (30)

serves as a good probe to the phase structure.

comment on the fact that the D dependence is negligible. and then says Fig. 5 shows the infinite-
size extrapolation which is an important issue in computing the condensate. we observe that the N
dependence is also very mild.

also, we want to say that the non-zero � at m̃0 ! 0 does not mean that chiral symmetry is broken
(cite Witten). See Figs. 6 and 8. Discuss this with relation to RG:  ̄ is dual to cos� in sine-Gordon
theory, and the extrapolation to the m̃0a ! 0 is to raise the cut-o↵ scale to infinity as compared to low
energy scales. This signals that cos� is relevant in one phase, and irrelevant in the other phase. As
Witten pointed out, the non-vanishing � is a signal of the BKT phase transition.
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FIG. 1. Fast (left) and slow (right) converenge of the DMRG algorithm in our simulations.

In the following, we demonstrate the calculations for the entanglement entropty, the fermion correlator, and the
fermion bilinear condensate. From our results of these four objects, we obtain knowledge of the phase structure that
is summarised in Sec. IVD.

we should say how we estimate the errors here. or say it somewhere else, eg, Sec. III.

A. Entanglement entropy

We compute the finite-size entanglement entropy for a finite system of size N , with the generic definition in Eq. (23).
In particular, this finite-size entanglement entropy, S
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with D being the bond dimension, and {�(0,n)
i

} denoting the set of singular values obtained by patitioning the N -site
one-dimensional system in two parts of sizes n and N � n, respectively. This entanglement entropy is a useful tool to
probe the critical points in quantum field theories. As demonstrated by Calabrese and Cardy [59, 60], at criticality,
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(n) exhibits the scaling behaviour,
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where c is the central charge, and k is a constant.

Figure 2 shows examples of the S
N

(n) from our analysis. For simulations performed at m̃0a = 0, it is observed
that the Calabrese-Cardy scaling in Eq. (29) is valid for the resultant S

N

(n) at all values of explored �(g). On the
contrary, at m̃0a 6= 0, then say what we learned from this, and don’t forget to say that the central charge
is 1 in the conformal phase, and in the gapped phase the entanglement entropy is small.

B. Fermion correlator

discuss how this correlator is related to the soliton correlator in the sine-Gordon model.
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Density-density correlators

Evidence for a critical phase

fitted values of A
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FIG. 8. Dependence of the parameter A for the power-exponential ansatz (36) on the coupling �(g). Shown are four fermion
masses, m̃0a = 0.005, 0.02, 0.08, 0.3 for a 1000-site system.

steeply increases when moving deeper into the gapped phase. For smaller masses, this dependence is milder, again as
for the A parameter. However, in general, the relative systematic error of C is smaller than the one of A, allowing
to pinpoint the transition point a bit more precisely. (KC: This will be revised with new fits for the string
correlator. Because of the systematic e↵ect that A saturates below 1, we would conclude from this that
the transition for m̃

0

a = 0.3 is between -0.84 and -0.86, while the density-density correlator indicated
between -0.82 and -0.84. So this paragraph will still be revised.)

C. Fermion bilinear condensate

In order to obtain further information for the nature of the observed phase transition, we investigate the chiral
condensate,
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where  (n) and  ̄(n) are fermion fields defined on the spatial lattice site n. Under the JW transformation,
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That is, the chiral condensate in the (1+1)-dimensional Thirring model corresponds to the staggered magnetisation
in the XXZ spin chain. Since Eq. (23) indicates that the anisotropy of this spin chain is never greater than one in
our study, the system can be in the Néel phase only when the staggered magnetic field is applied, i.e., when am̃

0

is non-vanishing in Eq. (22). For the corresponding quantum field theory, the Thirring model, this means that the
chiral condensate is expected to be zero in the massless limit. Such a feature is consistent with the fact that the
massless Thirring model in (1+1) dimensions is a conformal field theory. Furthermore, due to the presence of a
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ansatzes (36)-(38) on the coupling �(g). Right panel: dependence of the parameter ↵ and ⌘ for the power-law and power-
exponential fitting ansatzes (35)-(36) on the coupling �(g). Parameters: N = 1000, m̃0a = 0.02.

a proper choice of the fitting interval has to be made. To analyze the dependence of the fitting parameters on the
coupling �(g), we avoid the arbitrary choice of the fitting interval by adopting a systematic procedure, similar to the
one used e.g. in Ref. [9] (see the Appendix of this reference). We consider all possible fits in the interval x 2 [5, 49]
encompassing a minimum of 10 consecutive distances. Each fit is weighted with exp(��2/dof) and we build histograms
of the fitting parameters for each fitting ansatz. The central value for each fitting parameter in a given physical setup
(same system size, fermion mass and coupling) is extracted as the median of this distribution and the error as half of
the interval in which 68.3% of the weighted fits around the median are contained (corresponding to a 1-� deviation in
the case of an ideally Gaussian distribution). We note the obtained distributions are approximately Gaussian and the
thus extracted systematic error is in most cases a factor 5-10 larger than the error obtained from typical fits. Finally,
we add this systematic error to the one of the fit that best describes the data, defined as the one with the smallest
error among the fits with �2/dof  1.

The result of applying this procedure to the density-density correlator is shown in Fig. 6, again for fermion mass
m̃

0

a = 0.02. In the left panel, we show the A parameters extracted for di↵erent couplings. We note the A parameter
of the power-exponential fit becomes compatible with 1 somewhere between �(g) = �0.4 and �0.6. The expected
location of the BKT crossover is at �(g) ⇡ �0.7, however the smooth transition between the functional forms of
the power-law and power-exponential type of behavior makes it impossible to locate the BKT point at the current
level of precision. We expect that close to the critical point, there is only a small admixture of the exponential factor
to the power-law term, impossible to disentangle without much better precision. Further into the gapped phase, at
�(g) >⇠ �0.4, the exponential term becomes clearly visible and A is no longer consistent with 1. The value of A
drops when �(g) is increased and the exponent ⌘ of the power-law factor in the fitting ansatz increases towards less
negative values. Thus, the exponential decay becomes relatively more important deeper in the gapped phase. This is
also indicated by the smaller di↵erence of the parameter A and the parameter A

1

of the 3-exponential fit for positive
�(g), which would agree in the limit of purely exponential behavior.

In Fig. 7, we show the same kind of plot for a larger fermion mass, m̃
0

a = 0.3. In this case, the dependence of the
parameter A of the power-exponential fit is much steeper and A becomes compatible with 1 between �(g) = �0.82
and �0.84. This signals that the BKT transition moves towards more negative values of the coupling with increasing
fermion mass. For �(g) > �0.82, the system is clearly in the gapped phase, which is indicated also by �2/dof � 1
for the pure power-law fits. In contrast, such fits in the small fermion mass case are still reasonable until �(g) ⇡ 0,
as a consequence of our rather conservative error estimate procedure. We therefore conclude that the BKT crossover
is more pronounced for larger fermion masses. However, interestingly, the value of the exponent ⌘ of the power-
exponential fit is consistent with -2 for all couplings. A comparison of the coupling dependence of the parameter A for

13

 0.75

 0.8

 0.85

 0.9

 0.95

 1

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

∆(g)

Czz
pow-exp fit A

Czz
2exp fit A1

Czz
3exp fit A1

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

∆(g)

Czz
pow fit α

Czz
pow-exp fit η

FIG. 6. Density-density correlator Czz(x). Left panel: dependence of the parameter A and A1 for three types of exponential
ansatzes (36)-(38) on the coupling �(g). Right panel: dependence of the parameter ↵ and ⌘ for the power-law and power-
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a proper choice of the fitting interval has to be made. To analyze the dependence of the fitting parameters on the
coupling �(g), we avoid the arbitrary choice of the fitting interval by adopting a systematic procedure, similar to the
one used e.g. in Ref. [9] (see the Appendix of this reference). We consider all possible fits in the interval x 2 [5, 49]
encompassing a minimum of 10 consecutive distances. Each fit is weighted with exp(��2/dof) and we build histograms
of the fitting parameters for each fitting ansatz. The central value for each fitting parameter in a given physical setup
(same system size, fermion mass and coupling) is extracted as the median of this distribution and the error as half of
the interval in which 68.3% of the weighted fits around the median are contained (corresponding to a 1-� deviation in
the case of an ideally Gaussian distribution). We note the obtained distributions are approximately Gaussian and the
thus extracted systematic error is in most cases a factor 5-10 larger than the error obtained from typical fits. Finally,
we add this systematic error to the one of the fit that best describes the data, defined as the one with the smallest
error among the fits with �2/dof  1.

The result of applying this procedure to the density-density correlator is shown in Fig. 6, again for fermion mass
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a = 0.02. In the left panel, we show the A parameters extracted for di↵erent couplings. We note the A parameter
of the power-exponential fit becomes compatible with 1 somewhere between �(g) = �0.4 and �0.6. The expected
location of the BKT crossover is at �(g) ⇡ �0.7, however the smooth transition between the functional forms of
the power-law and power-exponential type of behavior makes it impossible to locate the BKT point at the current
level of precision. We expect that close to the critical point, there is only a small admixture of the exponential factor
to the power-law term, impossible to disentangle without much better precision. Further into the gapped phase, at
�(g) >⇠ �0.4, the exponential term becomes clearly visible and A is no longer consistent with 1. The value of A
drops when �(g) is increased and the exponent ⌘ of the power-law factor in the fitting ansatz increases towards less
negative values. Thus, the exponential decay becomes relatively more important deeper in the gapped phase. This is
also indicated by the smaller di↵erence of the parameter A and the parameter A
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parameter A of the power-exponential fit is much steeper and A becomes compatible with 1 between �(g) = �0.82
and �0.84. This signals that the BKT transition moves towards more negative values of the coupling with increasing
fermion mass. For �(g) > �0.82, the system is clearly in the gapped phase, which is indicated also by �2/dof � 1
for the pure power-law fits. In contrast, such fits in the small fermion mass case are still reasonable until �(g) ⇡ 0,
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FIG. 11. Fermion-antifermion correlator Cstring(x). Left panel: dependence of the parameter A and A1 for three types of
exponential ansatzes (36)-(38) on the coupling �(g). Right panel: dependence of the parameter ↵ and ⌘ for the power-law and
power-exponential fitting ansatzes (35)-(36) on the coupling �(g). Parameters: N = 1000, m̃0a = 0.005.
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the di↵erence between �̂ in the infinite�D limit and that computed at the largest bond dimension, D = 600, in our
simulations. For the cases where this di↵erence is smaller than the chosen precision of the DMRG algorithm in this
work, ✏ = 10�7, we assign ✏ as the error for extrapolated �̂. The infinite�D extrapolation is then followed by the
procedure of taking the thermodynamic limit, N ! 1. Here again, if the error of the infinite�N �̂ is smaller than
10�7, we replace it with ✏. Figure 13 shows examples of such extrapolations for [�(g), am̃

0

] = [�0.9, 0.01]. In this
figure, results of the condensate obtained at D = 400, 500, 600 and N = 400, 600, 800, 1000 are used. It is apparent
that �̂ exhibits very mild dependence on both D and N in these plots. This mild dependence is in fact observed for
all choices of [�(g), am̃

0

] in the regime D � 400 and N � 400.

Figure 14 shows representative results for the chiral condensate in the limit of infinite bond dimension and system size.
In figure, we only demonstrate �̂ at three values of the four-fermion coupling constant, corresponding to �(g) = 0.2,
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FIG. 6. Density-density correlator Czz(x). Left panel: dependence of the parameter A and A1 for three types of exponential
ansatzes (36)-(38) on the coupling �(g). Right panel: dependence of the parameter ↵ and ⌘ for the power-law and power-
exponential fitting ansatzes (35)-(36) on the coupling �(g). Parameters: N = 1000, m̃0a = 0.02.

a proper choice of the fitting interval has to be made. To analyze the dependence of the fitting parameters on the
coupling �(g), we avoid the arbitrary choice of the fitting interval by adopting a systematic procedure, similar to the
one used e.g. in Ref. [9] (see the Appendix of this reference). We consider all possible fits in the interval x 2 [5, 49]
encompassing a minimum of 10 consecutive distances. Each fit is weighted with exp(��2/dof) and we build histograms
of the fitting parameters for each fitting ansatz. The central value for each fitting parameter in a given physical setup
(same system size, fermion mass and coupling) is extracted as the median of this distribution and the error as half of
the interval in which 68.3% of the weighted fits around the median are contained (corresponding to a 1-� deviation in
the case of an ideally Gaussian distribution). We note the obtained distributions are approximately Gaussian and the
thus extracted systematic error is in most cases a factor 5-10 larger than the error obtained from typical fits. Finally,
we add this systematic error to the one of the fit that best describes the data, defined as the one with the smallest
error among the fits with �2/dof  1.

The result of applying this procedure to the density-density correlator is shown in Fig. 6, again for fermion mass
m̃

0

a = 0.02. In the left panel, we show the A parameters extracted for di↵erent couplings. We note the A parameter
of the power-exponential fit becomes compatible with 1 somewhere between �(g) = �0.4 and �0.6. The expected
location of the BKT crossover is at �(g) ⇡ �0.7, however the smooth transition between the functional forms of
the power-law and power-exponential type of behavior makes it impossible to locate the BKT point at the current
level of precision. We expect that close to the critical point, there is only a small admixture of the exponential factor
to the power-law term, impossible to disentangle without much better precision. Further into the gapped phase, at
�(g) >⇠ �0.4, the exponential term becomes clearly visible and A is no longer consistent with 1. The value of A
drops when �(g) is increased and the exponent ⌘ of the power-law factor in the fitting ansatz increases towards less
negative values. Thus, the exponential decay becomes relatively more important deeper in the gapped phase. This is
also indicated by the smaller di↵erence of the parameter A and the parameter A

1

of the 3-exponential fit for positive
�(g), which would agree in the limit of purely exponential behavior.

In Fig. 7, we show the same kind of plot for a larger fermion mass, m̃
0

a = 0.3. In this case, the dependence of the
parameter A of the power-exponential fit is much steeper and A becomes compatible with 1 between �(g) = �0.82
and �0.84. This signals that the BKT transition moves towards more negative values of the coupling with increasing
fermion mass. For �(g) > �0.82, the system is clearly in the gapped phase, which is indicated also by �2/dof � 1
for the pure power-law fits. In contrast, such fits in the small fermion mass case are still reasonable until �(g) ⇡ 0,
as a consequence of our rather conservative error estimate procedure. We therefore conclude that the BKT crossover
is more pronounced for larger fermion masses. However, interestingly, the value of the exponent ⌘ of the power-
exponential fit is consistent with -2 for all couplings. A comparison of the coupling dependence of the parameter A for
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Chiral condensate is not an order parameter

Extrapolated to infinite D and N
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FIG. 13. Extrapolations of �̂ to the D ! 1 at N = 1000 (left) and to the N ! 1 limits (right) at [�(g), am̃0] = [�0.9, 0.01].
Notice that errors on the data points and the extrapolated result for the right panel are too small to be discernible on the plot.

FIG. 14. The dependence on am̃0 in the chiral condensate at �(g) = 0.2, -0.2 and -0.8. The left panel shows results at all
values of am̃0 in this work, while the right panel displays only those at am̃0  0.04. Notice that errors on the data points are
too small to be discernible on the plots.

-0.2 and -0.8. The condensate computed at other choices of �(g) exhibit the same feature as that in this figure.
According to results of the entanglement entropy and the correlators discussed in Sec. IVA and IVB, the theory is
in the gapped (massive) phase at am̃

0

6= 0 for � > �⇤ = �0.7, while it can be in the critical phase at � < �⇤.
We notice that, in Fig. 14, �̂ is non-vanishing at � = �0.8 for all data points with non-zero values of am̃

0

. Most of
these data points are indeed in the critical phase. This means the chiral condensate is not an order parameter for the
observed phase transition, and provides further evidence that this transition is of KT-type [66].

In Fig. 14, it can be seen that �̂ extrapolates smoothly to zero at vanishing am̃
0

. As mentioned above, this is in
accordance with the fact that the massless Thirring model in (1+1) dimensions is a conformal field theory. Further-
more, We find that the chiral condensate computed directly at am̃

0

= 0 is zero for all values of �(g). Given that
all simulations that lead to results in Fig. 14 are performed at finite system sizes, we carry out checks for am̃

0

= 0
calculations with infinite-size simulations by employing the variational uniform MPS (VuMPS) method [67]. These
checks confirm that �̂ obtained from simulations at am̃

0

= 0 indeed vanishes. Results of the VuMPS approach will
be published in a separate article where we will report our study of real-time dynamics associate with the KT phase
transition in the massive Thirring model [68].

Evidence for criticality from other quantitiesMassive phase
Massiv

e phase



Phase structure of the Thirring model
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Employing Eq. (7), these β−functions can be rewritten in T and z, leading to

βT ≡ µ
dT

dµ
= −64π

z2

Λ4
,

βz ≡ µ
dz

dµ
=

1− 8πT

4πT
z −

64π

T 2Λ4
z3. (9)

These can be used to obtain the scaling behaviour of the Thirring model,

βg ≡ µ
dg

dµ
= −64π

m2

Λ2
,

βm ≡ µ
dm

dµ
=

−2(g + π
2 )

g + π
m−

256π3

(g + π)2Λ2
m3. (10)

III. DISCUSSION

From Eq. (10), it is clear that the value g = −π/2 plays a crucial role1. When g < −π/2, the RG evolution drives the
renormalised m to zero at low energy. This means m/Λ → 0, and then βg = 0. On the other hand, when g > −π/2,
the renormalised m exhibits the opposite behaviour, and will grow when the theory flows towards the IR limit. This
results in βg = 0, i.e., asymptotic freedom.
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Dynamical quantum phase transition
“Quenching” : Sudden change of coupling strength in time evolution 
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Questions: Any singular behaviour?   Related to equilibrium PT?
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The Loschmidt echo and the return rate

&

c.f., the partition function and the free energy

In uMPS computed from the largest eigenvalue of the “transfer matrix"
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Observing DQPT

massive critical
real time t real time t

massivecritical

DQPT is a “one-way” transition…



DQPT and eigenvalue crossing

D-dependence in the crossing points



“Universality” in DQPT?



Conclusion and outlook

• Concluding results for phase structure  

• Exploratory results for real-time dynamics

KT-type transition observed

DQPT observed

Relation to equilibrium KT phase transition?


