Phase structure and real-time dynamics of the massive Thirring model in $1+1$ dimensions using tensor-network methods

C.-J. David Lin
National Chiao-Tung University, Taiwan

with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz Univ.),
Hao-Ti Hung (National Taiwan Univ.), Ying-Jer Kao (National Taiwan Univ.),
Yu-Ping Lin (Univ. of Colorado, Boulder), David T.-L. Tan (National Chaio-Tung Univ.)

Lattice 2019
Wuhan
18/06/2019

The $1+1$ dimensional Thirring model and its duality to the sine-Gordon model

$$
\begin{aligned}
& S_{\mathrm{Th}}[\psi, \bar{\psi}]=\int d^{2} x\left[\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-m_{0} \bar{\psi} \psi-\frac{g}{2}\left(\bar{\psi} \gamma_{\mu} \psi\right)^{2}\right] \\
& S_{\mathrm{SG}}[\phi]=\int d^{2} x\left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)+\frac{\alpha_{0}}{t} \cos (\sqrt{t} \phi(x))\right] \\
& \xrightarrow{\phi \rightarrow \phi / \sqrt{t}} \frac{1}{t} \int d^{2} x\left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)+\alpha_{0} \cos (\phi(x))\right]
\end{aligned}
$$

Works in the zero-charge sector

RG flows of the Thirring model

$$
\begin{aligned}
& \beta_{g} \equiv \mu \frac{d g}{d \mu}=-64 \pi \frac{m^{2}}{\Lambda^{2}}, \\
& \beta_{m} \equiv \mu \frac{d m}{d \mu}=\frac{-2\left(g+\frac{\pi}{2}\right)}{g+\pi} m-\frac{256 \pi^{3}}{(g+\pi)^{2} \Lambda^{2}} m^{3}
\end{aligned}
$$

\star Massless Thirring model is a conformal field theory

Operator formalism and the Hamiltonian

- Operator formaliam of the Thirring model Hamiltonian
C.R. Hagen, 1967

$$
H_{\mathrm{Th}}=\int d x\left[-i \bar{\psi} \gamma^{1} \partial_{1} \psi+m_{0} \bar{\psi} \psi+\frac{g}{4}\left(\bar{\psi} \gamma^{0} \psi\right)^{2}-\frac{g}{4}\left(1+\frac{2 g}{\pi}\right)^{-1}\left(\bar{\psi} \gamma^{1} \psi\right)^{2}\right]
$$

- Staggering, J-W transformation $\left(S_{j}^{ \pm}=S_{j}^{x} \pm i S_{j}^{y}\right)$:
J. Kogut and L. Susskind, 1975; A. Luther, 1976

$$
\begin{gathered}
\bar{H}_{X X Z}=\nu(g)\left[-\frac{1}{2} \sum_{n}^{N-2}\left(S_{n}^{+} S_{n+1}^{-}+S_{n+1}^{+} S_{n}^{-}\right)+a \tilde{m}_{0} \sum_{n}^{N-1}(-1)^{n}\left(S_{n}^{z}+\frac{1}{2}\right)+\Delta(g) \sum_{n}^{N-1}\left(S_{n}^{z}+\frac{1}{2}\right)\left(S_{n+1}^{z}+\frac{1}{2}\right)\right] \\
\nu(g)=\frac{2 \gamma}{\pi \sin (\gamma)}, \tilde{m}_{0}=\frac{m_{0}}{\nu(g)}, \Delta(g)=\cos (\gamma), \text { with } \gamma=\frac{\pi-g}{2}
\end{gathered}
$$

$$
\bar{H}_{\mathrm{sim}}=\frac{\bar{H}_{X X Z}}{\nu(g)}+\lambda\left(\sum_{n=0}^{N-1} S_{n}^{z}-S_{\text {target }}\right)^{2}
$$

projected to a sector of total spin

Practice of finite MPS

```
One step in a sweep of finite-size DMRG
```


\star Open BC
\star Random tensors for the smallest bond dim

Simulation details for the phase structure

- Matrix product operator for the Hamiltonian (bulk)

$$
\begin{aligned}
W^{[n]} & =\left(\begin{array}{cccccc}
1_{2 \times 2} & -\frac{1}{2} S^{+} & -\frac{1}{2} S^{-} & 2 \lambda S^{z} & \Delta S^{z} & \beta_{n} S^{z}+\alpha 1_{2 \times 2} \\
0 & 0 & 0 & 0 & 0 & S^{-} \\
0 & 0 & 0 & 0 & 0 & S^{+} \\
0 & 0 & 0 & 1 & 0 & S^{z} \\
0 & 0 & 0 & 0 & 0 & S^{z} \\
0 & 0 & 0 & 0 & 0 & 1_{2 \times 2}
\end{array}\right) \\
\beta_{n} & =\Delta+(-1)^{n} \tilde{m}_{0} a-2 \lambda S_{\text {target }}, \alpha=\lambda\left(\frac{1}{4}+\frac{S_{\text {target }}^{2}}{N}\right)+\frac{\Delta}{4}
\end{aligned}
$$

- Simulation parameters
* Twenty values of $\Delta(g)$, ranging from -0.9 to 1.0
\star Fourteen values of $\tilde{m}_{0} a$, ranging from 0 to 0.4
\star Bond dimension $D=50,100,200,300,400,500,600$
* System size $N=400,600,800,1000$

Entanglement entropy (Lattice 2018)

Calabrese-Cardy scaling and the central charge

$$
S_{N}(n)=\frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N}\right)\right]+k
$$

Scaling observed at $\Delta(g) \lesssim-0.7$ for $\tilde{m}_{0} a \neq 0$, and for all values of $\Delta(g)$ at $\tilde{m}_{0} a=0$
\star In the critical phase, $c=1$

Density-density correlators

Soliton (string) correlators

$$
C_{\text {string }}(x)=\left\langle\psi^{\dagger}\left(x_{0}+x\right) \psi\left(x_{0}\right)\right\rangle \xrightarrow{\text { JW trans }} \frac{1}{N_{x}} \sum_{n} S^{+}(n) S^{z}(n+1) \cdots S^{z}(n+x-1) S^{-}(n+x)
$$

try fitting to

$$
C_{\text {string }}^{\text {pow }}(x)=\beta x^{\alpha}+C \text { and } C_{\text {string }}^{\text {pow }-\exp }(x)=B x^{\eta} A^{x}+C
$$

\star Similar behaviour in A. Evidence for a critical phase

Chiral condensate

$$
\hat{\chi}=a|\langle\bar{\psi} \psi\rangle|=\frac{1}{N}\left|\sum_{n}(-1)^{n} S_{n}^{z}\right|
$$

\star Chiral condensate is not an order parameter

Phase structure of the Thirring model

$$
\begin{aligned}
& \beta_{g} \equiv \mu \frac{d g}{d \mu}=-64 \pi \frac{m^{2}}{\Lambda^{2}}, \\
& \beta_{m} \equiv \mu \frac{d m}{d \mu}=\frac{-2\left(g+\frac{\pi}{2}\right)}{g+\pi} m-\frac{256 \pi^{3}}{(g+\pi)^{2} \Lambda^{2}} m^{3}
\end{aligned}
$$

Massless Thirring model is a conformal field theory

Uniform MPS and real-time evolution

* Translational invariance in MPS
\star Finding the infinite BC for amplitudes (largest eigenvalue normalised to be 1)

H.N. Phien, G. Vidal and I.P. McCulloch, Phys. Rev. B86, 2012
\star Similar (more complicated) procedure in the variation search for the ground state

...V. Zauner-Stauber et al, Phys. Rev. B97, 2018
* Real-time evolution via time-dependent variational principle
\Longrightarrow Key: projection to MPS in $i \frac{d}{d t}|\Psi(A(t))\rangle=P_{|\Psi(A)\rangle} \hat{H}|\Psi(A(t))\rangle$

Dynamical quantum phase transition

* "Quenching" : Sudden change of coupling strength in time evolution

$$
H\left(g_{1}\right)\left|0_{1}\right\rangle=E_{0}^{(1)}\left|0_{1}\right\rangle \text { and } \quad|\psi(t)\rangle=\mathrm{e}^{-i H\left(g_{2}\right) t}\left|0_{1}\right\rangle
$$

\star Questions: Any singular behaviour? Related to equilibrium PT?

* The Loschmidt echo and the return rate

$$
L(t)=\left\langle 0_{1}\right| \mathrm{e}^{-i H\left(g_{2}\right) t}\left|0_{1}\right\rangle \quad \& \quad g(t)=-\lim _{N \rightarrow \infty} \frac{1}{N} \ln L(t)
$$

\rightarrow c.f., the partition function and the free energy
\rightarrow In uMPS computed from the largest eigenvalue of the "transfer matrix"

$$
T_{i, j}(t)=i\left\{\begin{array}{c}
-\bar{A}_{0_{1}} \\
-(t)
\end{array}\right\} j
$$

Observing DQPT

DQPT is a "one-way" transition...

DQPT and eigenvalue crossing

\star D-dependence in the crossing points

"Universality" in DQPT?

Conclusion and outlook

- Concluding results for phase structure
\star KT-type transition observed
- Exploratory results for real-time dynamics
* DQPT observed
\star Relation to equilibrium KT phase transition?

