Domain-wall fermion and **Atiyah-Patodi-Singer index**

Hidenori Fukaya (Osaka U.)

HF, T Onogi, S. Yamaguchi PRD96(2017) no.12, 125004 [arXiv:1710.03379]

M. Furuta (U. Tokyo), S. Matsuo (Nagoya U.), T. Onogi (Osaka U.), S. Yamaguchi (Osaka U.), M. Yamashita (U.Tokyo)

[arXiv: 19xx.xxxxx]

Physicist-friendly APS index

In Lattice 2017, we proposed

"A physicist-friendly reformulation of the Atiyah-Patodi-Singer index theorem."

F,. Onogi, Yamaguchi PRD96(2017) no.12, 125004 [arXiv:1710.03379]

Recently, we invited 3 mathematicians and succeeded in a mathematical proof.

F, Furuta, Matuso, Onogi, Yamaguchi, Yamashita, in progress

Physicist-friendly APS index

In Lattice 2017, we proposed

"A physicist-friendly reformulation of the Atiyah-Patodi-Singer index theorem."

F,. Onogi, Yamaguchi PRD96(2017) no.12, 125004 [arXiv:1710.03379]

Recently, we invited 3 mathematicians and succeeded in a mathematical proof.

F, Furuta, Matuso, Onogi, Yamaguchi, Yamashita, in progress

Atiyah-Patodi-Singer index theorem

index on a manifold with boundary,

$$\lim_{\Lambda \to \infty} \text{Tr} \gamma_5 e^{D_{4D}^2/\Lambda^2} = \frac{1}{32\pi^2} \int_{x_4 > 0} d^4 x \epsilon_{\mu\nu\rho\sigma} \text{tr} [F^{\mu\nu} F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

integer

non-integer

non-integer

$$\eta(iD^{3\mathrm{D}}) = \sum_{\lambda \geq 0} {^{reg}} - \sum_{\lambda < 0} {^{reg}} = \sum_{\lambda} {^{reg}} \mathrm{sgn}\lambda$$

[Atiyah-Patodi-Singer 1975]

4-dim. domain-wall fermion in continuum

Massless Dirac fermion localized at 3-dim edge. No gauge anomaly, but T(or parity) anomaly. good model for topological insulator.

APS index in topological insulator

APS index is a key to understand bulk-edge correspondence in symmetry protected topological insulator [Witten 2015]:

fermion path integrals

$$Z_{\rm edge} \propto \exp(-i\pi\eta(iD^{\rm 3D})/2)$$

T-anomalous

$$Z_{\text{bulk}} \propto \exp\left(i\pi \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \text{tr}[F^{\mu\nu}F^{\rho\sigma}]\right)$$

T-anomalous

$$Z_{\mathrm{edge}}Z_{\mathrm{bulk}} \propto (-1)^{\mathfrak{I}} \longrightarrow \mathsf{T} \text{ is protected }!$$

$$\mathfrak{J} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

[Related works: Metlitski 15, Seiberg-Witten 16, Tachikawa-Yonekura 16, Freed-Hopkins 16, Witten 16, Yonekura 16...]

 APS boundary condition is non-local, while that of topological matter is local.

- 1. APS boundary condition is non-local, while that of topological matter is local.
- 2. APS is for massless fermion but bulk fermion of topological insulator is massive (gapped).

- 1. APS boundary condition is non-local, while that of topological matter is local.
- 2. APS is for massless fermion but bulk fermion of topological insulator is massive (gapped).
- 3. No edge-localized modes allowed under the APS boundary condition.

- APS boundary condition is non-local, while that of topological matter is local.
- 2. APS is for massless fermion but bulk fermion of topological insulator is massive (gapped).
- 3. No edge-localized modes allowed under the APS boundary condition.
- 4. No physicist-friendly literature [except for Alvarez-Gaume et al. 1985 (but boundary condition is obscure.)]

- 1. APS boundary condition is non-local, while that of topological matter is local.
- 2. APS is for massless fermion but bulk fermion of topological insulator is massive (gapped).
- 3. No edge-localized modes allowed under the APS boundary condition.
- 4. No physicist-friendly literature [except for Alvarez-Gaume et al. 1985 (but boundary condition is obscure.)]
- → We launched a study group reading original APS paper and it took 3 months to translate it into "physics language", and we proposed an alternative expression.

Difficulty with boundary

If we impose **local** and **Lorentz** (**rotation**) invariant boundary condition, + and – chirality sectors do not decouple any more.

 n_+, n_- and the index do not make sense.

Atiyah-Patodi-Singer boundary

condition

[Atiyah, Patodi, Singer 75]

Gives up the locality and rotational symmetry but keeps the chirality.

Eg. 4 dim
$$x^4 \ge 0$$
 $A_4 = 0$ gauge

$$D = \gamma^4 \partial_4 + \gamma^i D_i = \gamma^4 (\partial_4 + \gamma^4 \gamma^i D_i)$$

They imposed a non-local A $x^4 = 0$ boundary

$$(A + |A|)\psi|_{x^4=0} = 0$$

$$[\gamma_5, A] = 0.$$

Beautiful!

But physicistunfriendly.

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

non-local h boundary

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

non-local boundary

information propagates faster than speed of light.

information

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

→ need to give up chirality and consider L/R mixing

(massive case)

$$n_{+} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

 \rightarrow need to give up chirality and consider L/R mixing (massive case)

$$n_{+} = \frac{1}{32\pi^{2}} \int_{x_{4}>0} d^{4}x \epsilon_{\mu\nu\rho\sigma} \text{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

Can we still make a fermionic integer (even if it is ugly)?

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

 \rightarrow need to give up chirality and consider L/R mixing (massive case) $\frac{1}{n(iD^{3D})}$

$$n_{+} = \frac{1}{32\pi^{2}} \int_{x_{4}>0} d^{4}x \epsilon_{\mu\nu\rho\sigma} \text{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

Can we still make a fermionic integer (even if it is ugly)? Our answer is "Yes, we can".

Contents

✓ 1. Introduction

We have to consider massive fermions.

- 2. Eta-invariant of domain-wall Dirac operator [F, Onogi, Yamaguchi 2017]
- 3. Mathematical proof
 [F, Furuta, Matsuo, Onogi, Yamaguchi, Yamashita in progress]
- 4. Discussion

5. Summary

Atiyah-Singer(AS) index from massive Dirac operator

$$H = \gamma_5(D+M)$$

Zero-modes of D = still eigenstates of H:

$$H\phi_0 = \gamma_5 M\phi_0 = \pm M\phi_0.$$

Non-zero modes make ± pairs

$$H\phi_i = \lambda_i \phi_i \quad HD\phi_i = -DH\phi_i = -\lambda_i D\phi_i$$

$$\eta(H) = \sum_{i} \operatorname{sgn} \lambda_{i}$$

$$= \# \text{ of } +M - \# \text{ of } -M = AS \text{ index!}$$

$\eta(H)$ always jumps by 2.

To increase + modes, we have to borrow one from - (UV) modes.

Good regularizations (e.g. Pauli-Villars, lattice) respect this fact.

"new" APS index [F-Onogi-Yamaguchi 2017]

$$\frac{1}{2}\eta(\gamma_{5}(D+M))^{reg} = \text{AS index}$$

$$\frac{1}{2}\eta(\gamma_{5}(D+M\epsilon(x_{4})))^{reg}$$

$$\epsilon(x_{4}) = \operatorname{sgn}x_{4}$$

$$= \frac{1}{32\pi^{2}} \int_{x_{4}>0} d^{4}x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

which can be shown with Fujikawa method.

Trace computation done with free domain-wall fermion eigenmode set

$$\eta(H_{DW}) = \lim_{s \to 0} \text{Tr} \frac{H_{DW}}{(\sqrt{H_{DW}^2})^{1+s}} = \frac{1}{\sqrt{\pi}} \int_0^\infty dt t^{-1/2} \text{Tr} H_{DW} e^{-tH_{DW}^2}$$
$$H_{DW} = \gamma_5 (D + M\varepsilon(x_4))$$

or solutions to Schrodinger equation with δ function-like potential: $H_{DW}^2 = -\partial_u^2 + M^2 - 2M\gamma_4\delta(x_4)$

$$\varphi_{\pm,o}^{\omega}(x_4) = \frac{1}{\sqrt{4\pi}} \left(e^{i\omega x_4} - e^{-i\omega x_4} \right),$$

$$\varphi_{\pm,e}^{\omega}(x_4) = \frac{1}{\sqrt{4\pi(\omega^2 + M^2)}} \left((i\omega \mp M)e^{i\omega|x_4|} + (i\omega \pm M)e^{-i\omega|x_4|} \right),$$

$$\varphi_{+,e}^{\text{edge}}(x_4) = \sqrt{M}e^{-M|x_4|},$$
 Edge mode appears !

Domain-wall fermion is physicist-friendly

(similar to topological insulators).

- 1. massless Dirac (even in bulk)
- 2. non-local boundary cond. (depending on gauge fields)
- 3. SO(2) rotational sym. on boundary is lost.
- 4. no edge mode appears.
- 5. manifold + boundary

Domain-wall fermion

- 1. massive Dirac in bulk (massless mode at edge)
- 2. local boundary cond.
- 3. SO(2) rotational sym. on boundary is kept.
- 4. Edge mode describes eta-invariant.
- 5. closed manifold + domain-wall

Contents

✓ 1. Introduction

We have to consider massive fermions.

2. Eta-invariant of domain-wall Dirac operator

[F, Onogi, Yamaguchi 2017]

 $\mathfrak{I} = \eta(\gamma_5(D+M\epsilon(x_4)))^{reg}/2$ coincides with the APS index.

3. Mathematical proof

[F, Furuta, Matsuo, Onogi, Yamaguchi, Yamashita in progress]

4. Discussion

5. Summary

Theorem 1: APS index = index with infinite cylinder

In original APS paper, they showed

Index w/ APS b.c. = Index with infinite cylinder attached to the original boundary (w.r.t. square integrable modes).

^{*} On cylinder, gauge fields are constant in the extra-direction.

Theorem 2: Localization (& product formula)

By giving position-dependent "mass", we can localize the zero modes to "massless" lower-dimensional surface and the index is given by the product:

m=0 surface

$$Ind(\gamma_s(D^d + \partial_s + i\gamma_s M(s))) =$$

$$Ind(D^d) \times Ind(\gamma_s \partial_s + M(s))$$

= generalization of domain-wall fermion

Theorem 3: In odd-dim, APS index = boundary etainvariant

$$\int F \wedge F \wedge \cdots$$

exists only in even-dim.

$$Ind(D_{APS}^{odd-dim}) = \frac{1}{2} \left[\eta(D^{boundary1}) - \eta(D^{boundary2}) \right]$$

5-dimensional Dirac operator

we consider

$$D^{5D} = \begin{pmatrix} 0 & \partial_5 + \gamma_5 (D^{4D} + m(x_5, x_4)) \\ -\partial_5 + \gamma_5 (D^{4D} + m(x_5, x_4)) & 0 \end{pmatrix}$$

where

$$m(x_5, x_4) = \begin{cases} M & \text{for } x_4 > 0 \& x_5 > 0 \\ -M_2 & \text{otherwise} \end{cases}$$

and A_{μ} is

independent of x5.

On X^{4D} x R,

we compute

$$Ind(D^{5D})$$

in two different ways:

 x_4

- 1. localization
- 2. eta-inv. at $s=\pm 1$.

Localization

Theorem 2 tells us

 $s=x_5$

$$Ind(D^{5D})|_{M,M_2\to\infty} = Ind(D^{4D}_{m=0\text{surface}}) \times \underbrace{IndD^{1D}_{normal}}$$

and on the massless surface =1

$$X_{x_4>0}^{4D} = X_{x_4>0}^{4D}$$

theorem 1 indicates

$$Ind(D_{m=0\text{surface}}^{4D}) = Ind(D_{APS}^{X_{x_4>0}})$$

Boundary eta invariants

Theorem 1 tells us

$$Ind(D^{5D}) = Ind(D^{5D}_{APS b.c.ats=\pm 1})$$

and from theorem 3, we obtain

$$Ind(D_{APS \text{ b.c.}ats=\pm 1}^{5D}) = \frac{1}{2} \left[\eta(D_{s=1}^{4D}) - \eta(D_{s=-1}^{4D}) \right]$$

$$= \frac{1}{2} \left[\eta(\gamma_5(D^{4D} + M\epsilon(x_4)) - \eta(\gamma_5(D^{4D} - M_2)) \right] = \frac{1}{2} \eta^{PVreg.} (\gamma_5(D^{4D} + M\epsilon(x_4)))$$

therefore,
$$Ind(D^{5D}) = Ind(D_{APS}) = \frac{1}{2}\eta(H_{DW})$$

Q.E.D.

Contents

✓ 1. Introduction

We have to consider massive fermions.

✓ 2. Eta-invariant of domain-wall Dirac operator

[F, Onogi, Yamaguchi 2017]

 $\mathfrak{I} = \eta(\gamma_5(D + M\epsilon(x_4)))^{reg}/2$ coincides with the APS index.

3. Mathematical proof

[F, Furuta, Matsuo, Onogi, Yamaguchi, Yamashita in progress]

 $Ind(D_{APS})$ and $\eta(\gamma_5(D+M\epsilon(x_4)))^{reg}/2$ =the same 5D index!

4. Discussion

5. Summary

Massive fermion: chiral symmetry is NOT important.

The lattice fermion "knew" this fact:

$$Ind(D_{ov}) = \frac{1}{2} \text{Tr} \gamma_5 \left(1 - \frac{aD_{ov}}{2} \right) \quad D_{ov} = \frac{1}{a} \left(1 + \gamma_5 \frac{H_W}{\sqrt{H_W^2}} \right)$$
$$= -\frac{1}{2} \text{Tr} \frac{H_W}{\sqrt{H_W^2}} = -\frac{1}{2} \eta (\gamma_5 (D_W - M))!$$

If the original AS index were given by

$$-\frac{1}{2}\eta(\gamma_5(D-M))$$

we should have known the lattice index theorem much before Hasenfratz 1998 or Neuberguer 1998.

Massless vs. massive

index theorems with massless Dirac

	continuum	lattice
AS	$Tr\gamma^5 e^{-D^2/M^2}$	$\boxed{\text{Tr}\gamma^5(1 - aD_{ov}/2)}$
APS	${\rm Tr}\gamma^5 e^{-D^2/M^2}$ w/ APS b.c.	not known.

index theorems with massive Dirac

	continuum	lattice
AS	$-\frac{1}{2}\eta(\gamma_5(D-M))$	$-\frac{1}{2}\eta(\gamma_5(D_W-M))$
APS	$-\frac{1}{2}\eta(\gamma_5(D-M\epsilon(x)))$	

Massless vs. massive

index theorems with massless Dirac

	continuum	lattice
AS	$Tr\gamma^5 e^{-D^2/M^2}$	$\boxed{\text{Tr}\gamma^5(1-aD_{ov}/2)}$
APS	${\rm Tr}\gamma^5 e^{-D^2/M^2}$ w/ APS b.c.	not known.

index theorems with massive Dirac

	continuum	lattice
AS	$-\frac{1}{2}\eta(\gamma_5(D-M))$	$-\frac{1}{2}\eta(\gamma_5(D_W-M))$
APS	$-\frac{1}{2}\eta(\gamma_5(D-M\epsilon(x)))$	$-\frac{1}{2}\eta(\gamma_5(D_W-M\epsilon(x)))?$

Massless vs. massive

index theorems with massless Dirac

	continuum	lattice
AS	$Tr\gamma^5 e^{-D^2/M^2}$	$\boxed{\text{Tr}\gamma^5(1 - aD_{ov}/2)}$
APS	${\rm Tr}\gamma^5 e^{-D^2/M^2}$ w/ APS b.c.	not known.

index theorems with massive Dirac

	continuum	lattice
AS	$-\frac{1}{2}\eta(\gamma_5(D-M))$	$-\frac{1}{2}\eta(\gamma_5(D_W-M))$
APS	$-\frac{1}{2}\eta(\gamma_5(D-M\epsilon(x)))$	$-\frac{1}{2}\eta(\gamma_5(D_W-M\epsilon(x)))?$

Next talk by N. Kawai

Contents

✓ 1. Introduction

We have to consider massive fermions.

✓ 2. Eta-invariant of domain-wall Dirac operator

[F, Onogi, Yamaguchi 2017]

 $\mathfrak{I} = \eta(\gamma_5(D+M\epsilon(x_4)))^{reg}/2$ coincides with the APS index.

✓ 3. Mathematical proof

[F, Furuta, Matsuo, Onogi, Yamaguchi, Yamashita in progress]

 $Ind(D_{APS})$ and $\eta(\gamma_5(D+M\epsilon(x_4)))^{reg}/2$ =the same 5D index!

✓ 4. Discussion

eta-invariant gives a united view of index theorems.

5. Summary

Summary

$$Ind(D_{APS}) = \frac{1}{2}\eta(H_{DW})$$

- 1. APS index describes bulk-edge correspondence of topological insulators.
- 2. APS (as well as AS) index can be re-defined by the eta-inv. of massive domain-wall operator.
- 3. We have given a mathematical proof for general cases by the 5D index.
- 4. eta-invariant of massive operator gives a unified view of index theorems (including their lattice version).

Backup slides

Recursion of eta-invariants

and edge of edge states $\int s = x_5$

We have seen

$$Ind(D^{5D}) = Ind(D^{5D}_{APS b.c.ats=\pm 1})$$

$$= Ind(D_{APS}) = \frac{1}{2}\eta(H_{DW}^{reg})$$

We can recursively use

equivalence to show

$$Ind(D_{APS \text{ b.c.}ats=\pm 1}^{5D}) = \frac{1}{2}\eta(\gamma_7(D^{5D} + \mu(s)))^{reg.}.$$

then, the original 3D-edge state becomes

edge of edge state in 5D dimension.

[F, Onogi, Yamamoto, Yamamura 2016, Hashimoto, Kimura Wu 2016]

edge of edge states

Example: 1+1d bulk + 0+1d edge Majorana fermion coupled to gravity

APS index tells

$$Z \propto \exp\left(2\pi i \frac{n}{8}\right)$$

consistent with Z₈ classification of Kitaev's interacting Majorana chain.

Eta invariant = Chern Simons term + integer (non-local effect)

$$\frac{\eta(iD^{3D})}{2} = \frac{CS}{2\pi} + integer$$

$$CS \equiv \frac{1}{4\pi} \int_{Y} d^{3}x \operatorname{tr}_{c} \left[\epsilon_{\nu\rho\sigma} \left(A^{\nu} \partial^{\rho} A^{\sigma} + \frac{2i}{3} A^{\nu} A^{\rho} A^{\sigma} \right) \right],$$

= surface term.

$$\Im = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$