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Atiyah-Patodi-Singer index theorem

Index on a manifold with boundary,
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4-dim. domain-wall fermion In

continuum

DDW — D + MG(CB4)

e(ry) = sgnry

Massless Dirac
fermion localized at
3-dim edge.

No gauge anomaly,
but T (or parity)
anomaly.

good model for
topological insulator.



APS index in topological insulator

APS index is a key to understand bulk-edge
correspondence in symmetry protected topological
insulator [Witten 2015 ]:

fermion Zedge X exp(—iﬂ'n(iDgD)/Q) T-anomalous

path integrals .

Zbulk X €Xp (iﬂ' 393 L4>0 d4xewp(,tr[F“”Fp"])
. T-anomalous
ZedgeZbulk X (—1) mmp Tis protected!
1 i D3P)
3272 2

3= / dize o tr[ P o] 1
x4>0

[Related works: Metlitski 15, Seiberg-Witten 16, Tachikawa-Yonekura 16, Freed-
Hopkins 16, Witten 16, Yonekura 16...]



What puzzled us



What puzzled us

1. APS boundary condition is non-local, while that of
topological matter is local.



What puzzled us

1. APS boundary condition is non-local, while that of
topological matter is local.

2. APS is for massless fermion but bulk fermion of
topological insulator is massive (gapped).



What puzzled us

1. APS boundary condition is non-local, while that of
topological matter is local.

2. APS is for massless fermion but bulk fermion of
topological insulator is massive (gapped).

3. No edge-localized modes allowed under the APS
boundary condition.



What puzzled us

1. APS boundary condition is non-local, while that of
topological matter is local.

2. APS is for massless fermion but bulk fermion of
topological insulator is massive (gapped).

3. No edge-localized modes allowed under the APS
boundary condition.

4. No physicist-friendly literature [except for Alvarez-
Gaume et al. 1985 (but boundary condition is obscure.)]



What puzzled us

1. APS boundary condition is non-local, while that of
topological matter is local.

2. APS is for massless fermion but bulk fermion of
topological insulator is massive (gapped).

3. No edge-localized modes allowed under the APS
boundary condition.

4. No physicist-friendly literature [except for Alvarez-
Gaume et al. 1985 (but boundary condition is obscure.)]

— We launched a study group reading original APS
paper and it took 3 months to translate it into “physics
language”, and we proposed an alternative expression.



Difficulty with boundary

If we impose local and Lorentiz (rotation)
invariant boundary condition, + and —
chirality sectors do not decouple any more.

- . [ | angular momentum is
N conserved

ni+, n— and the index do not make sense.



Atiyah-Patodi-Singer boundary

condition [Atiyah, Patodi, Singer 75]

Gives up the locality and rotational symmetry

but keeps the chirality.

Eg. 4 dim x* > 0 A, =0 gauge

D =y*04+y'D; = y*(0a +y*y'Dy) \
| w

x* =0

|

They imposed a non-locél

A boundary
b.C.
(A T ‘A|)¢|x4:0 =0 Beautifull
s, A] = 0. But physicist-

> index = ny — n_ unfriendly.
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Locality >> chirality for physicists

Locality (=causality) 1s essential.

We cannot accept APS condition even If 1t Is
beautiful.

<=
non-local nit!
boundary iInformation propagates

faster than speed of light.

INformation




Locality >> chirality for physicists

Locality (=causality) is essential.
We cannot accept APS condition even if it i1s beautiful.

— need to give up chirality and consider L/R mixing
(massive case)

1 'DSD
T =y | dbseupotel e
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Locality >> chirality for physicists

Locality (=causality) Is essential.
We cannot accept APS condition even If It is beautiful.

— need to give up chirality and consider L/R mixing
(massive case) 3D
Mn_ _ / d4:1:ewpatr[F“”Fp“]—n(2D )

Can we still make a fermionic integer (even if it is ugly)?

Our answer is “Yes, we can’.
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Atiyah-Singer(AS) index

from massive Dirac operator
H = v5(D + M)

/ero-modes of D = still eigenstates of H:

Hoog =5 Moo = =M o
Non-zero modes make + pairs
Hop; =N Np; HD@; = —-DH¢o; = —\iDo;

n(H) =) sgn\

1

= # of +M — # of —M = AS index!




n(H) always jumps by 2.

@ unpaired
To increase + modes, H =~5(D + M) @ paired

we have to borrow
one from - (UV) modes.

Good regularizations
(e.g. Pauli-Villars, lattice)
respect this fact.

> Index(D) = %U(H)



“new” APS index [F-Onogi-Yamaguchi 2017]

;W(V5(D+M = AS Index

$

03 (D + Me(z4)))"

€(ry) = sgnay

/ d4xewmtr[F“”F”"] Ul
x4 >0

B 1
3972

il}&D)
2

which can be shown with Fujikawa method.



Trace computation done with free
domain-wall fermion eigenmode set

. Hpw
n(Hpw) = lim Tr
s—0 (\/H%W)l—l—s

= % /OOO dtt_l/QTrHDWe_tH%W
Hpw = v5(D + Me(z4))

or solutions to Schrodinger equation with O -

function-like potential:

» 1
Spi,o(xél) — \/477_‘_

Spi,e(xll) —

Hpyy = =05 + M*—2M~,40(24)

(ezw:c4 L e—zwx4) 7

1
\/47T(w2 + M?

055 (za)= VMe M| mmmd  Edge mode appears !

; ((zw T M)e™!7sl 4 (jw + M)e_w|x4|) ,



O

Domain-wall fermion is
physicist-friendly

(similar to topological insulators).

APS

. massless Dirac

(even in bulk)

non-local boundary cond.

(depending on gauge fields)

SO(2) rotational sym. on
boundary is lost.

no edge mode appears.
manifold + boundary

O

Domain-wall fermion

. massive Dirac in bulk (massless mode

at edge)
local boundary cond.

SO(2) rotational sym. on boundary is
kept.

Edge mode describes eta-invariant.
closed manifold + domain-wall
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Theorem 1:
APS index = index with infinite cylinder

In original APS paper, they showed

<)@

Index w/ APS b.c. = Index with infinite
cylinder attached to the original boundary
(w.r.t. square integrable modes).

* On cylinder, gauge fields are constant in the extra-direction.



Theorem 2:
Localization (& product formula)

By giving position-dependent "mass”, we can
localize the zero modes to "massless” lower-
dimensional surface and the index is given by

the product:

face

Ind(vs(D% 4 05 + ivs M (s))) =
Ind(D%) x Ind(v,0s + M(s))

= generalization of domain-wall fermion



Theorem 3:
In odd-dim, APS index = boundary eta-

Invariant
/F NEN--- -)

exists only in even-dim.

—dim 1 oundar oundar
Ind(D3 ™) =  [(DPouwndamt)y — p( phowndarsz)]



5-dimensional Dirac operator

we consider

75D _ 0 05 + v5(D*P + m(xs5,14))
—05 + 75 (D*P + m(x5, x4)) 0

where M forxzy >0& x5 >0

- — M otherwise

m(xs, Tqg) = <

and A4, is

iIndependent of xs.



we compute
Ind(D°")

INn two different

ways:

1. localization

2. eta-inv. at
s = +1.




Localization

Theorem 2 tells us

L4

Ind(D")| a0ty —00 = Ind(D2A? ) x IndD}>

m=0surface normal

N———
and on the massless surface =!

theorem 1 Indicates
X4D
Ind(Dx> ) = Ind(D,p&")

m=0surface




Boundary eta

Invariants
Theorem 1 tells us

5D\ 5D
ITLCZ(D ) o Ind(DAPS b.C.atS::ZI)

and from theorem 3, we obtain

1

]nd(Di‘?PS b.C.atsz::l) — 5 [n(D‘A;El) N U(D‘A;E_l)]

B % 1(v5(D*P + Me(x4)) — n(vs(D*° — Ma)| = %77]3”6‘(]'(’%(174D + Me(za))
1
Q.E.D.
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Massive fermion : chiral
symmetry is NOT important.

The lattice fermion “knew” this fact:

1 D,., 1 H
Ind(D,,) = §T1W5 (1 - : ) Doy = - (1+W5 > )

v Hyy
1 Hywy 1
- ——Tr\/H2 = ——77(75(DW M))!
It the original AS index were given by
1
—5M(5(D — M))

we should have known the lattice index theorem
much before Hasenfratz 1998 or Neuberguer 1998.



Massless vs. massive

iINndex theorems with massless Dirac

AS
APS

continuum

lattice

Iy e

_DQ/MQ

Try° (1 — aDy, /2)

Tr75e_D2/M2W/ APS b.c.

not known.

iIndex theorems with massive Dirac

AS
APS

continuum

lattice

1

—577(%(19 — M))

1

—577(75(Dw — M))

1

—51(7s5(D — Me(x)))

2
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Massless vs. massive

iINndex theorems with massless Dirac

AS
APS

continuum

lattice

Tr e~ D7 /M

Try° (1 — aDy, /2)

Tr75e_D2/M2W/ APS b.c.

not known.

iIndex theorems with massive Dirac

AS
APS

continuum

lattice

1

—577(%(17 — M))

—%n(%(Dw — M))

1

- on(s(D = Me()))

1

— 5115 (Dw — Me(2)))?

¥

Next talk by N. Kawal
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1

SuMmMary  rud(paps) - Sn(Hpw)

1. APS index describes bulk-edge
correspondence of topological insulators.
2. APS (as well as AS) index can be re-defined

by the eta-inv. of massive domain-wall operator.

3. We have given a mathematical proof for

general cases by the 5

D Index.

4. eta-invariant of massive operator gives a unified

view of index theorems (including their lattice

Version).



Backup slides



Recursion of eta-invariants
and edge of edge states

We have seen
Ind(D°°) = Ind(DApg 1 c.arseit)
1 Te
= Ind(Daps) = 5n(Hp)

We can recursively use

dge of edge states

L4

equivalence to show

1 re
[nd(D?‘?PS b.c.ats=t1) = 577(77(D5D + u(s)))"

then, the original 3D-edge state becomes

edge of edge state in 5D dimension.
[F, Onogi, Yamamoto, Yamamura 2016, Hashimoto, Kimura Wu 2016]



Example : 1+1d bulk + O+1d edge
Majorana fermion coupled to gravity

APS Index tells
-
Z XX exp (zﬁlg)

consistent with Zs classification

of Kitaev's interacting Majorana
chain.



Eta invariant = Chern Simons term +
integer (non-local effect)

77(7;1;313) — gf - Integer
CS = 417T B tr, {e,,p(, (AV@PA% 3A”APA“>}

= surface term.
1 'DSD
— / dize o te[ P o] 1D )
327T z4>0 2

Q



