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Gradient flow vs real-space Wilsonian RG

GF is not an RG transformation, but 
– GF fields act like RG blocked fields 
– Wave function renormalization (η exponent) can be added 
– Coarse graining done when calculating expectation values 

→ GF acts like RG blocking with continuous scale change 
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they describe continuum physics:
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Action parameter space

RT trajectory 

g1

g2

bare action

GPT

continuum physics

Once the flows reach the RT
they describe continuum physics:

Define renormalized coupling, 
β function, anomalous dimensions

Different bare couplings will overlap on RT!

Topology of RG flows

IRFP

Conformal systems are
the same



RG properties from a single simulation?
Yes, in infinite volume and             

In a realistic simulation only if  
• flow time is large to reduce cutoff effects  
• but small to avoid finite volume effects  

→ chain together several flows 

Example: continuous β function in Nf=2 flavor massless QCD 
         

Demonstration:   
• Symanzik gauge action, stout smeared Möbius domain wall fermions 
• Zeuthen flow, Symanzik operator 
• 243 x 64 (and 163 x 64) volumes, standard BC   
• 11 (x 2)  ensembles, β = 4.60 - 8.50 (chirally symmetric!)        

g2
0 → 0

β(g2) = − 2t
dg2

dt



Continuous β function

Predictions of different bare coupling values overlap,  
as RG considerations suggests

color bands:
predictions of the  β function
from various single ensembles

PRELIMINARY



Continuous β function

tmin = 2.0 is large enough
to avoid most cutoff
effects. Corresponds
to c=0.166 in step scaling

tmax = 3.4 is small enough
to avoid most finite volume
effects. Corresponds
to c=0.22 in step scaling

PRELIMINARY



163  x 64 (open circles)
is very similar
(tmax is smaller)

Finite volume effects 
are small

Continuous β function

Why does it follow 1-loop PT? 
• β function is scheme dependent
• Nf=3 GF β function  from step scaling also follows 1-loop PT

PRELIMINARY



Continuous RG β function, step-by-step
Definitions: 

    in the                                     limit with  

         is defined for each ensemble 
•                   corrects for gauge zero modes 
• Correlated t values reduce statistical uncertainty 
• Only large volumes used, reducing cut-off effects 
• Flow time t/a2 does not grow with volume 
• (Definition of continuous           differs from step scaling 

function by a factor -2)

β(g2) = − 2t
dg2

dt

g2
GF(t/a2; L/a, g2

0) =
128π2

3(N2 − 1)
1

1 + δ(t/L2)
⟨t2E(t)⟩

L/a → ∞, t/L2 → 0,

1 + δ(t/L2)

β(g2)

β(g2)



Volume dependence of 

 

•Finite volume effects are controlled by t/L2

• Simulations at am0=0 in the chirally symmetric regime  

- limits the accessible g2 range  (absolute limit)

Simulations at 
β = 4.60 - 8.50

g2
GF



Continuum limit: L→∞

 1) Take L/a = ∞ while keeping t/a2  fixed :

• interpolate β(g2; L) vs  g2 on every volume, fixed flow time
• extrapolate to L = ∞ at selected (g2 , t)

If t << L 2, linear extrapolation in 1/L 2  is sufficient. Add more/larger
volumes to check systematic effects.



Continuum limit: L→∞

For systematic L→∞ and more details  see Nf=12 poster

 1) Take L/a = ∞ while keeping t/a2  fixed :

• interpolate β(g2; L) vs  g2 on every volume, fixed flow time
• extrapolate to L = ∞ at selected (g2 , t)



Continuum limit: t→∞

β(g2) = β(g2; t/a2) + ξ(a2/t)1+p + h.o.t

1/t1+p

 2)  Take t/a2 = ∞ at fixed g2 : 
• flow approaches RT, irrelevant operators die out

                   describes the leading irrelevant operator (p=0 at GFP)
 
  Consider different operators that approximate the energy density



Continuum limit: t→∞

β(g2) = β(g2; t/a2) + ξ(a2/t)1+p + h.o.t

1/t1+p

 2)  Take t/a2 = ∞ at fixed g2 : 
• flow approaches RT, irrelevant operators die out

                   describes the leading irrelevant operator (p=0 at GFP)
 
  Consider different operators that approximate the energy density

Finite volume extrapolation is unreliable : limit t range



Nf  = 2  continuous β function in continuum limit:

Various flow ranges,
operator combinations
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Nf  =2  continuous β function in continuum limit:

Why was  this so easy? 
• DW fermions have small cutoff effects
• We used Symanzik gauge and Zeuthen flow: RT is close
• Symanzik and plaquette operators are closest to scaling operator

Compare full
continuum limit 
prediction 
to L=24 

PRELIMINARY



Continuum limit of continuous β function

Systematic effects:
• consider different L = ∞ extrapolations 
• vary tmin, tmax
•  allow higher order operators

• combine different operators and force β(g2), p to be common

    - In 2-flavor QCD systematic effects are small
    - In slowly running conformal / near-conformal systems β(g2) is 
       is more difficult

β(g2) = β(g2; t/a2) + ξ1(a2/t) + ξ2(a2/t)1+p



GF as RG: anomalous dimension

〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉

= b2ΔO−2nOΔφ

Use an operator with no anomalous dimension to remove wave function
renormalization (ex. vector)

x0≫b

Along the RT all cut-off effects are removed. 
Ratio of flowed & unflowed correlators predict the anomalous dimension

Double-ratio 

predicts anomalous dimension 

Rt
O(x0)=

〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈A(0)At(x0)〉

)nO/nA = t γ O



Nf=2 anomalous dimension

Rt
O(x0)=

〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈A(0)At(x0)〉

)nO/nA = t γ O

flow time dependence of 
the plateau gives 
anomalous dimension

Super-ratio 

has no x0 dependence if x0 >> b

Domain wall

pseudoscalar



Nf=2 anomalous dimensions

Running anomalous dimension calculation 
works equally well :

L=24 only
Seems to follow 1-loop PT

g2

PRELIMINARY
Domain wall



s

Running is very slow   
g2 vs 𝛾 is continuous, RG β fn is needed to find 𝛾IRFP  (see poster) 

Domain wall

PRELIMINARY



 Summary

• GF can be considered as real-space RG: 
 - particularly helpful in conformal systems with IRFP 

     -  GF is continuous, making the RG efficient

•  Continuum physics is along RT :
     - Take the  L /a→∞  limit while keeping g2 and t/a2 fixed

- Take the  a2 /t → 0 continuum limit

• Showed results for the continuous β function and anomalous 
dimensions in 2-flavor QCD 
- For a more difficult system see poster on Nf=12 flavors
- O. Witzel’s talk on Thursday on Nf=10 flavors

• Existing step scaling GF data are easy to reanalyze 



EXTRA SLIDES



Nf=12 continuous β function

Using existing configurations on L/a = 20,24,28,32 volumes 
Domain wall fermions, APBC, Zeuthen flow
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1/L2 → 0 extrapolation:

Nf=12 continuous β function
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Nf=12 continuous β function

1/t → 0 extrapolation 

0 0.2 0.4 0.6 0.8 1
1/t

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-
(g

2
=2

.8
)

Nf=12,ZS, g 2=2.8

lin3
lin4
lin5

0 0.2 0.4 0.6 0.8 1
1/t

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-
(g

2
=4

.9
)

Nf=12,ZS, g 2=4.9

lin3
lin4
lin5



Nf=12 continuous β function

1/t → 0 continuum extrapolation, 3 operators independently
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Continuum limit: Nf=12 continuous β function

Various 1/L, 1/t , operator extrapolations 
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