Continuous β function and anomalous dimensions in QCD and conformal systems

Anna Hasenfratz
University of Colorado Boulder

Lattice 2019 Wuhan, June 17

with Oliver Witzel

GF is not an RG transformation, but

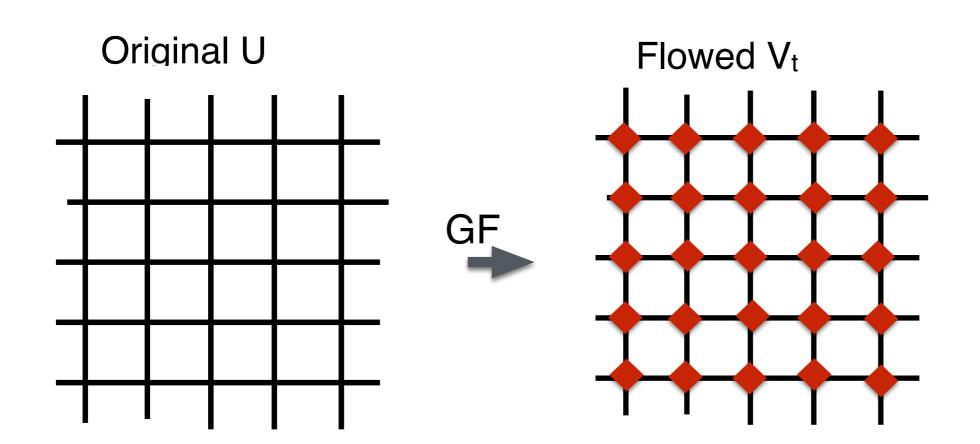
A. Carosso, AH, E.Neal, PRL121,(2018)201601

- GF fields act like RG blocked fields
- Wave function renormalization (η exponent) can be added
- Coarse graining done when calculating expectation values
- ightarrow GF acts like RG blocking with **continuous** scale change $b \propto \sqrt{t}$

A. Carosso, AH, E.Neal, PRL121,(2018)201601

GF is not an RG transformation, but

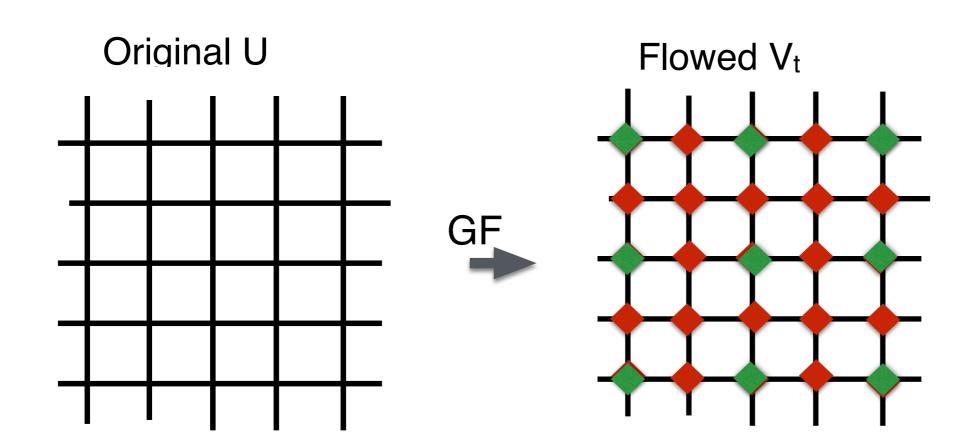
- GF fields act like RG blocked fields
- Wave function renormalization (η exponent) can be added
- Coarse graining done when calculating expectation values
- ightarrow GF acts like RG blocking with **continuous** scale change $b \propto \sqrt{t}$



A. Carosso, AH, E.Neal, PRL121,(2018)201601

GF is not an RG transformation, but

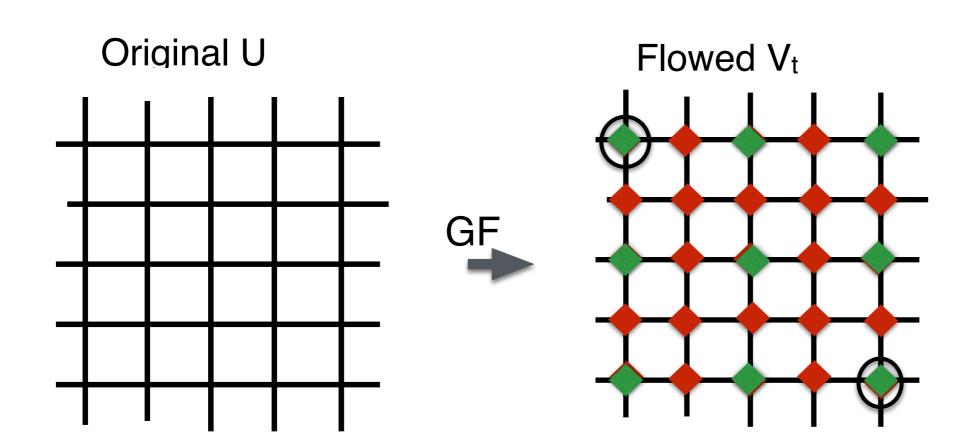
- GF fields act like RG blocked fields
- Wave function renormalization (η exponent) can be added
- Coarse graining done when calculating expectation values
- ightarrow GF acts like RG blocking with **continuous** scale change $b \propto \sqrt{t}$



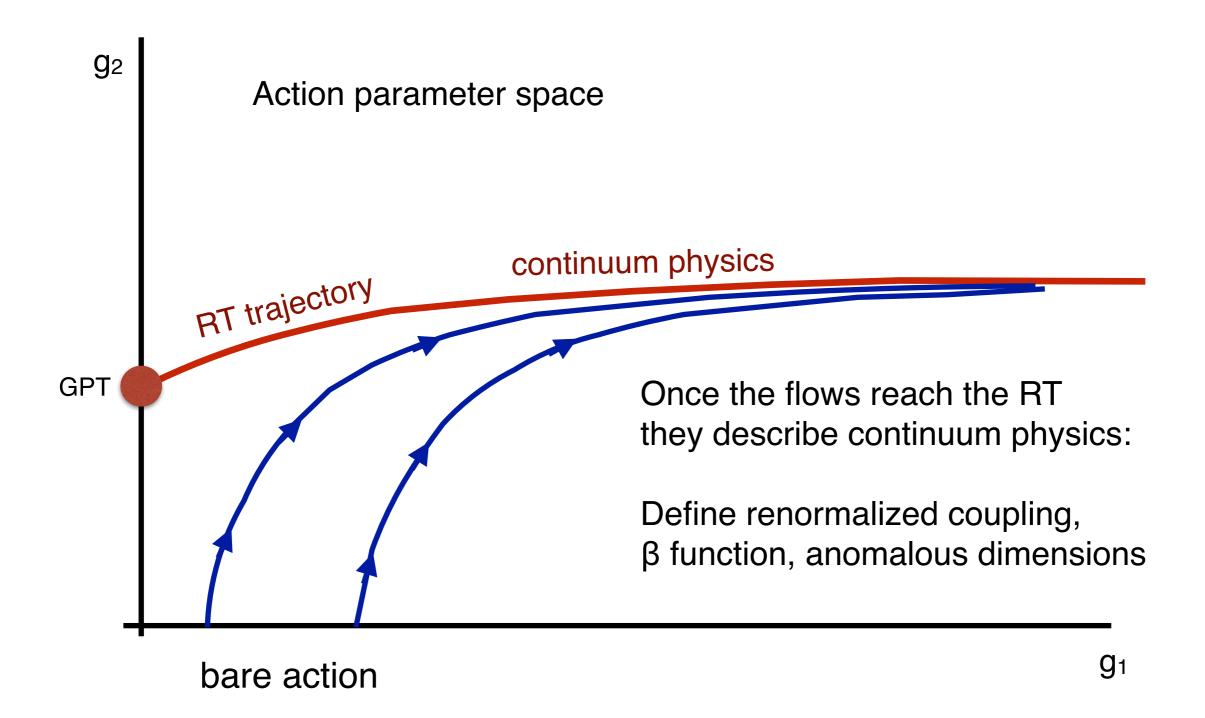
A. Carosso, AH, E.Neal, PRL121,(2018)201601

GF is not an RG transformation, but

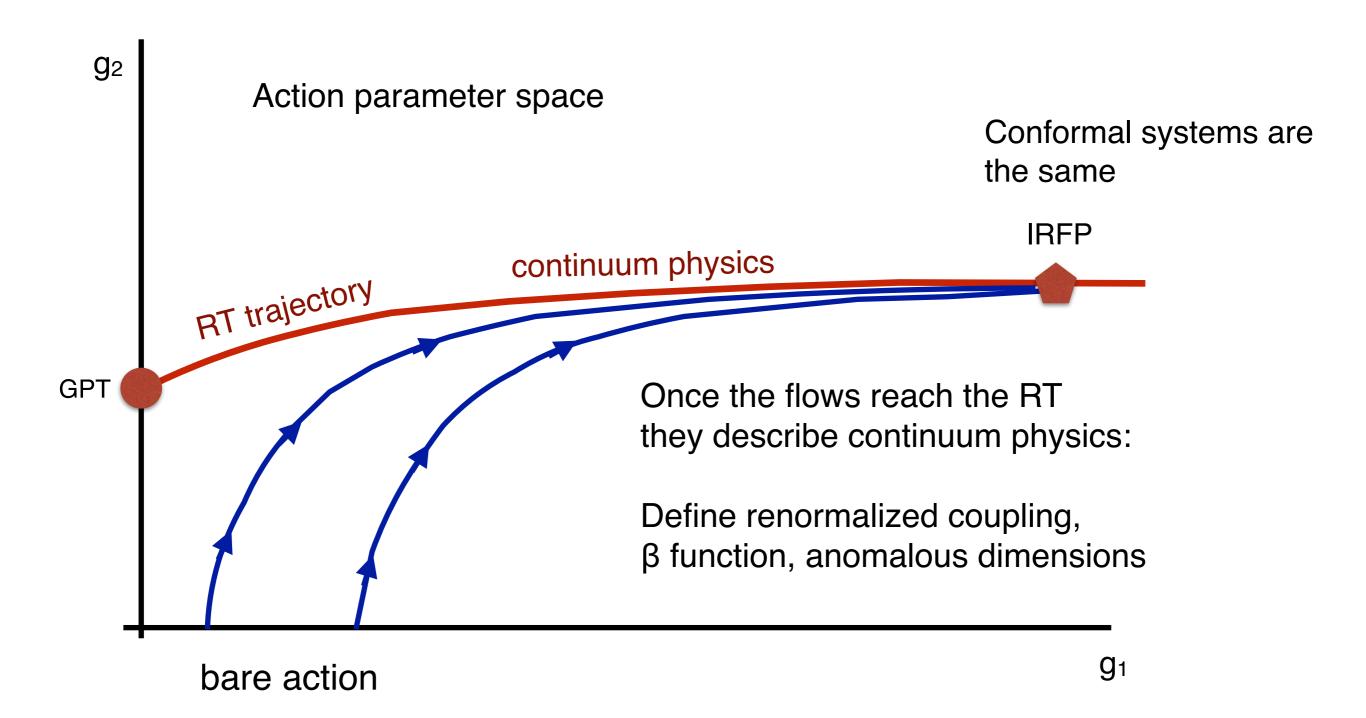
- GF fields act like RG blocked fields
- Wave function renormalization (η exponent) can be added
- Coarse graining done when calculating expectation values
- ightarrow GF acts like RG blocking with **continuous** scale change $b \propto \sqrt{t}$



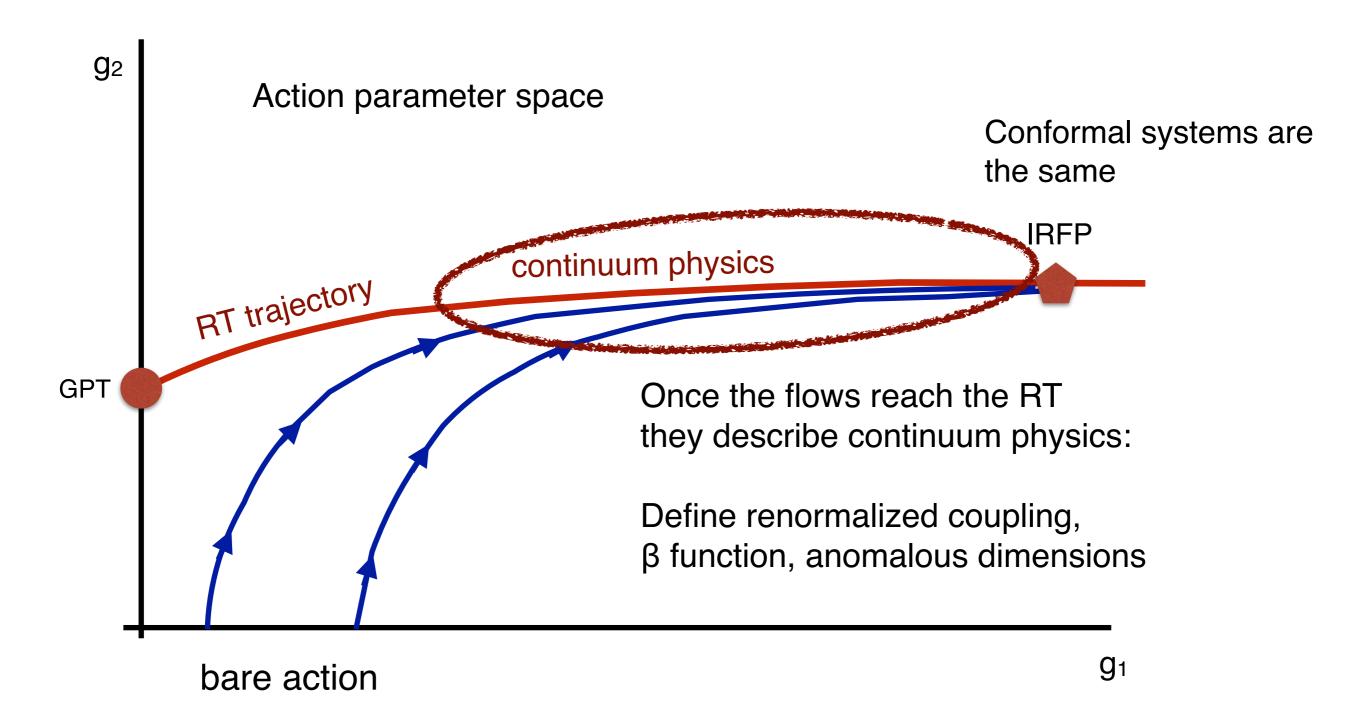
Topology of RG flows



Topology of RG flows



Topology of RG flows



Different bare couplings will overlap on RT!

RG properties from a single simulation?

Yes, in infinite volume and $g_0^2 \rightarrow 0$

In a realistic simulation only if

- flow time is large to reduce cutoff effects
- but small to avoid finite volume effects
- → chain together several flows

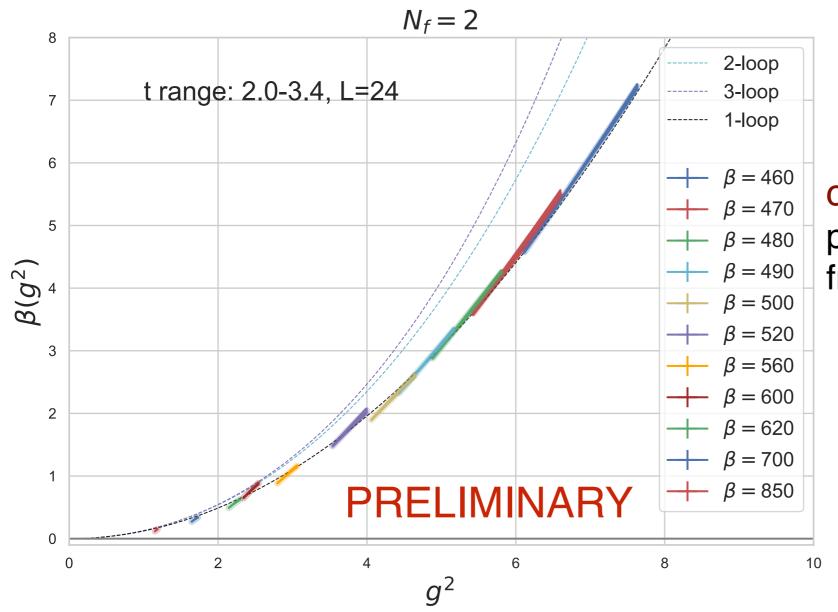
Example: continuous β function in N_f=2 flavor massless QCD

$$\beta(g^2) = -2t \frac{dg^2}{dt}$$

Demonstration:

- Symanzik gauge action, stout smeared Möbius domain wall fermions
- Zeuthen flow, Symanzik operator
- 24³ x 64 (and 16³ x 64) volumes, standard BC
- 11 (x 2) ensembles, β = 4.60 8.50 (chirally symmetric!)

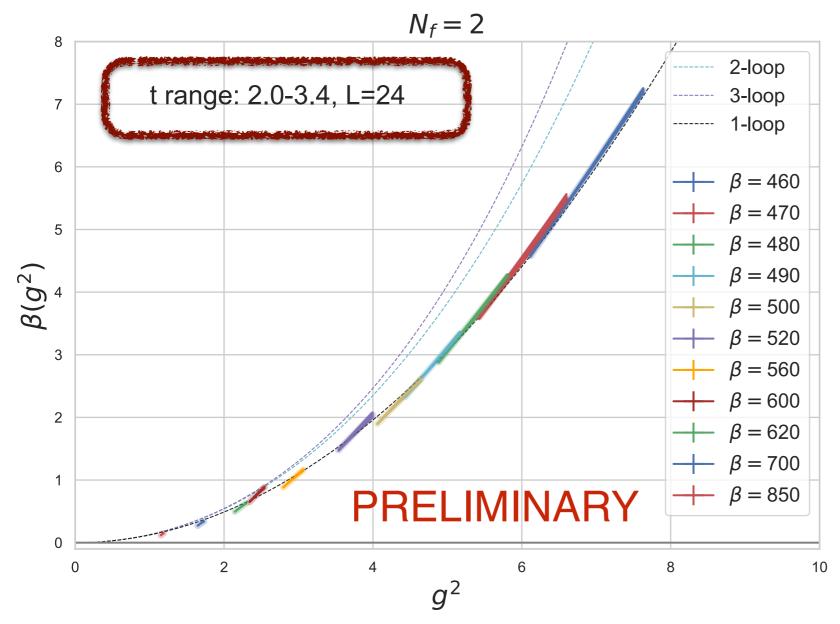
Continuous & function



color bands: predictions of the β function from various single ensembles

Predictions of different bare coupling values overlap, as RG considerations suggests

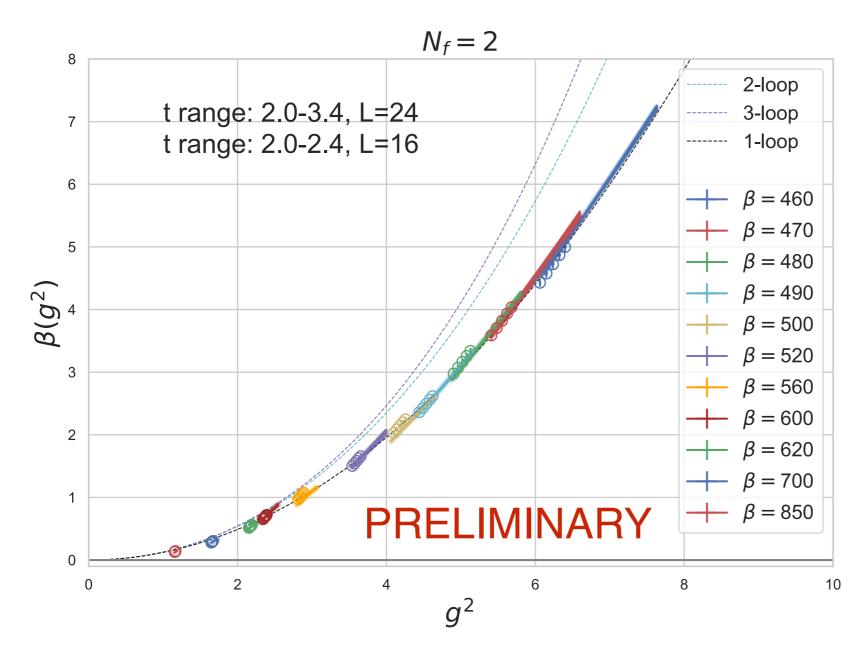
Continuous & function



t_{min} = 2.0 is large enough to avoid most cutoff effects. Corresponds to c=0.166 in step scaling

 t_{max} = 3.4 is small enough to avoid most finite volume effects. Corresponds to c=0.22 in step scaling

Continuous & function



16³ x 64 (open circles) is very similar (t_{max} is smaller)

Finite volume effects are small

Why does it follow 1-loop PT?

- β function is scheme dependent
- N_f=3 GF β function from step scaling also follows 1-loop PT

Continuous RG \(\beta \) function, step-by-step

Definitions:

$$\beta(g^2) = -2t \frac{dg^2}{dt}$$

in the $L/a \to \infty$, $t/L^2 \to 0$, limit with

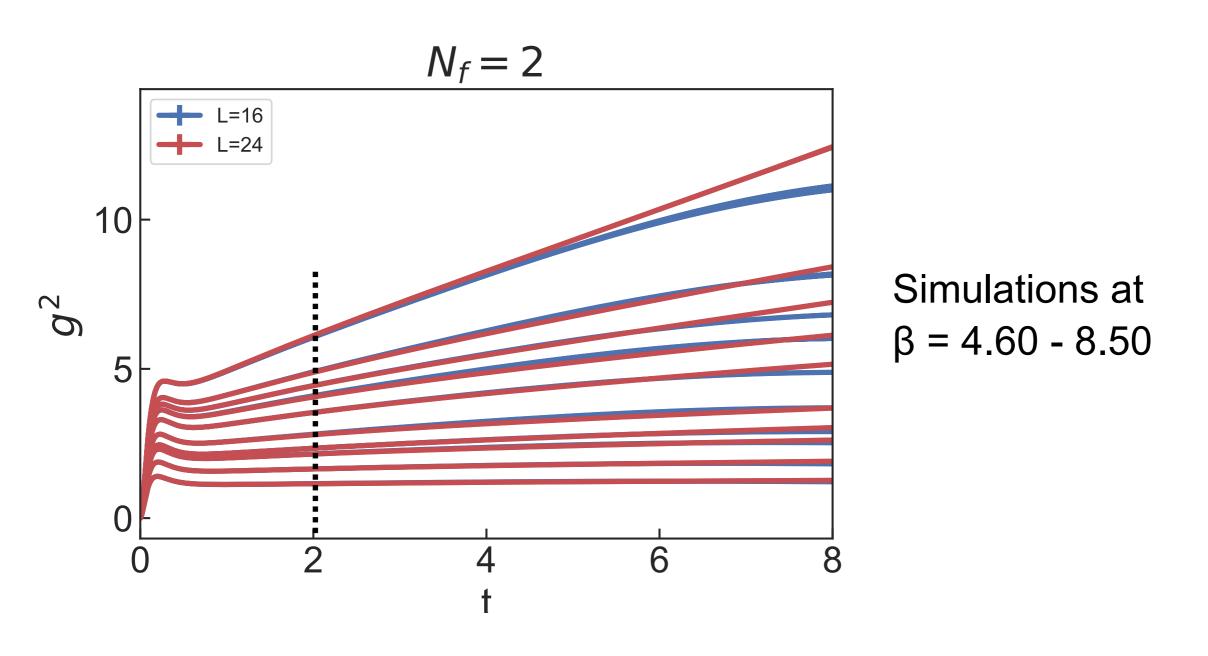
$$g_{GF}^2(t/a^2; L/a, g_0^2) = \frac{128\pi^2}{3(N^2 - 1)} \frac{1}{1 + \delta(t/L^2)} \langle t^2 E(t) \rangle$$

 $\beta(g^2)$ is defined for each ensemble

- $1 + \delta(t/L^2)$ corrects for gauge zero modes
- Correlated t values reduce statistical uncertainty
- Only large volumes used, reducing cut-off effects
- Flow time t/a² does not grow with volume
- (Definition of continuous $\beta(g^2)$ differs from step scaling function by a factor -2)

Volume dependence of g_{GF}^2

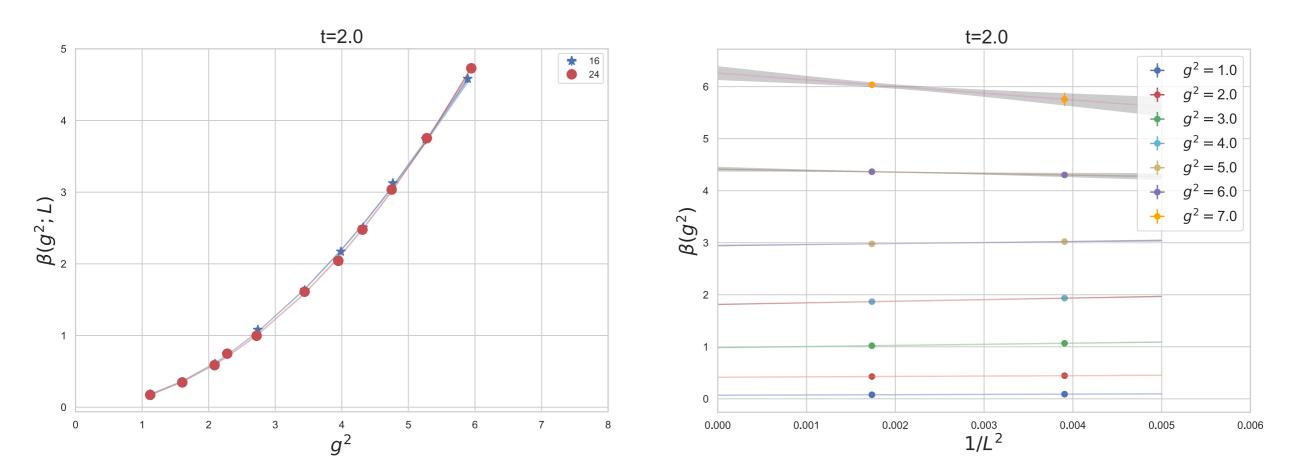
- •Finite volume effects are controlled by t/L²
- Simulations at am₀=0 in the chirally symmetric regime
 - limits the accessible g² range (absolute limit)



Continuum limit: L→∞

1) Take $L/a = \infty$ while keeping t/a^2 fixed:

- interpolate β(g²; L) vs g² on every volume, fixed flow time
- extrapolate to $L = \infty$ at selected (g^2 , t)

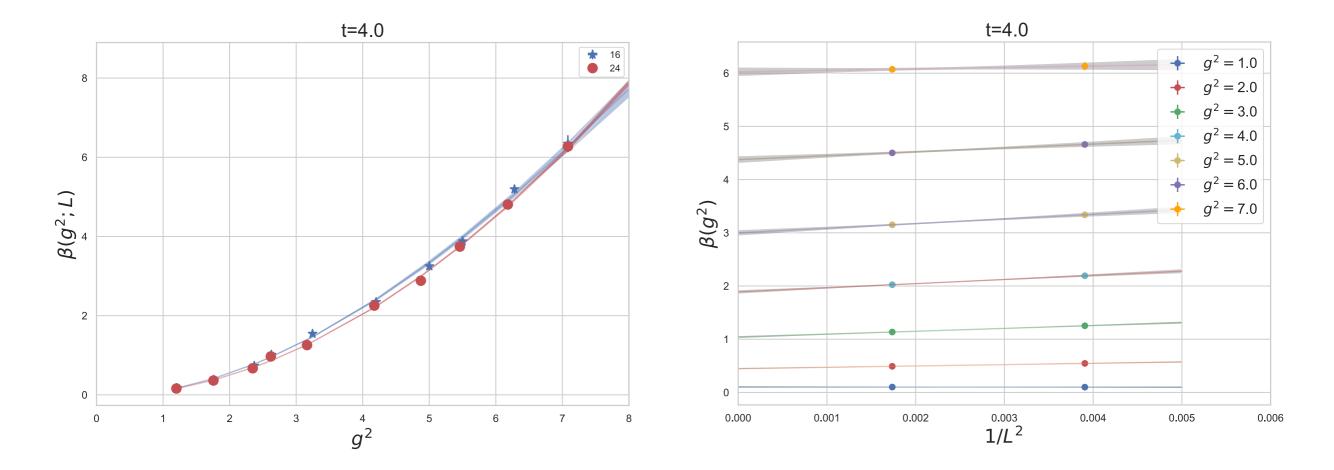


If t << L², linear extrapolation in 1/L² is sufficient. Add more/larger volumes to check systematic effects.

Continuum limit: L→∞

1) Take $L/a = \infty$ while keeping t/a^2 fixed :

- interpolate $\beta(g^2; L)$ vs g^2 on every volume, fixed flow time
- extrapolate to $L = \infty$ at selected (g^2 , t)



For systematic L→∞ and more details see N_f=12 poster

Continuum limit: t→∞

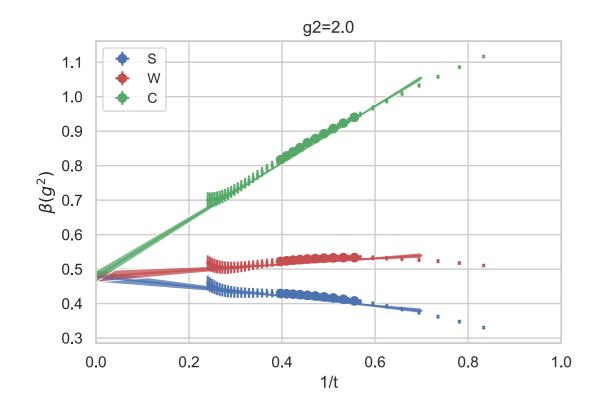
2) Take $t/a^2 = \infty$ at fixed g^2 :

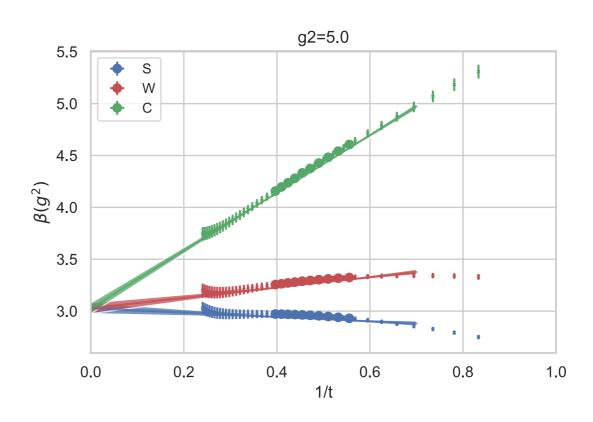
• flow approaches RT, irrelevant operators die out

$$\beta(g^2) = \beta(g^2; t/a^2) + \xi(a^2/t)^{1+p} + \text{h.o.t}$$

 $1/t^{1+p}$ describes the leading irrelevant operator (p=0 at GFP)

Consider different operators that approximate the energy density





Continuum limit: t→∞

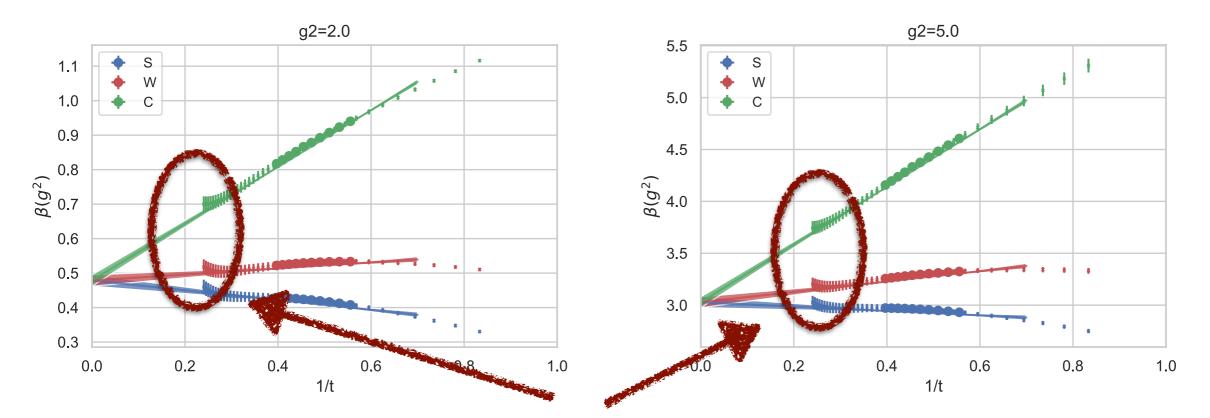
2) Take $t/a^2 = \infty$ at fixed g^2 :

flow approaches RT, irrelevant operators die out

$$\beta(g^2) = \beta(g^2; t/a^2) + \xi(a^2/t)^{1+p} + \text{h.o.t}$$

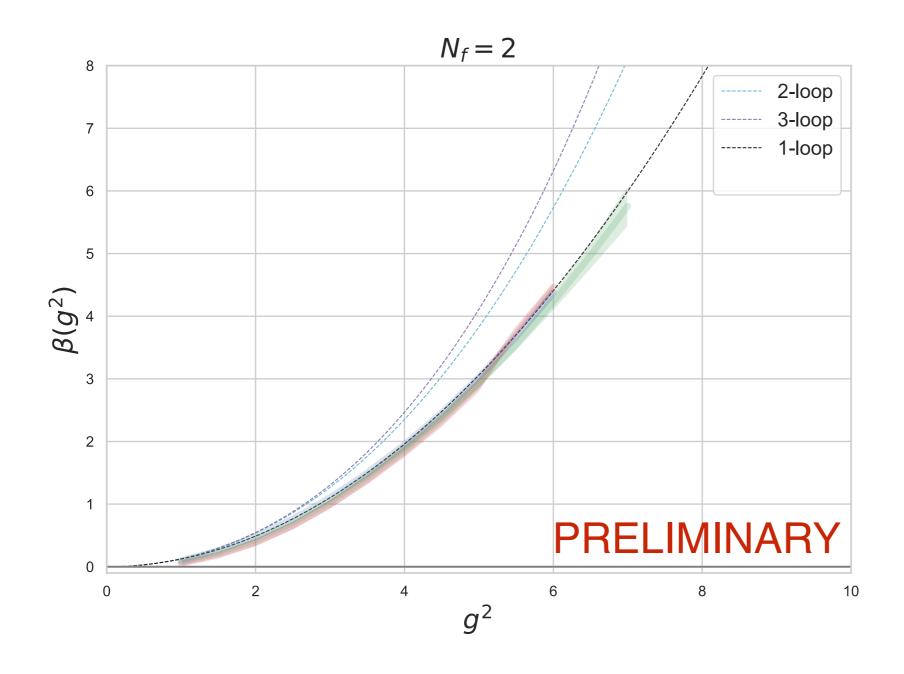
 $1/t^{1+p}$ describes the leading irrelevant operator (p=0 at GFP)

Consider different operators that approximate the energy density



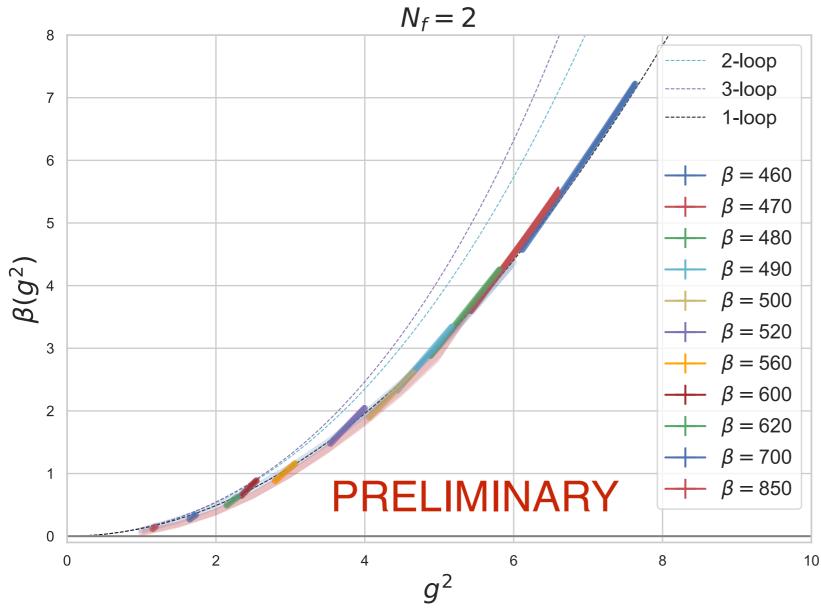
Finite volume extrapolation is unreliable : limit t range

$N_f = 2$ continuous β function in continuum limit:



Various flow ranges, operator combinations

$N_f = 2$ continuous β function in continuum limit:



Compare full continuum limit prediction to L=24

Why was this so easy?

- DW fermions have small cutoff effects
- We used Symanzik gauge and Zeuthen flow: RT is close
- · Symanzik and plaquette operators are closest to scaling operator

Continuum limit of continuous β function

Systematic effects:

- consider different L = ∞ extrapolations
- vary t_{min}, t_{max}
- allow higher order operators

$$\beta(g^2) = \beta(g^2; t/a^2) + \xi_1(a^2/t) + \xi_2(a^2/t)^{1+p}$$

- combine different operators and force $\beta(g^2)$, p to be common
- In 2-flavor QCD systematic effects are small
- In slowly running conformal / near-conformal systems $\beta(g^2)$ is is more difficult

GF as RG: anomalous dimension

Along the RT all cut-off effects are removed.

Ratio of flowed & unflowed correlators predict the anomalous dimension

$$\frac{\langle O_t(0)O_t(x_0)\rangle}{\langle O(0)O(x_0)\rangle} = b^{2\Delta_0 - 2n_0\Delta_\phi} \qquad x_0 \gg b$$

Use an operator with no anomalous dimension to remove wave function renormalization (ex. vector)

Double-ratio

$$\mathcal{R}_{t}^{O}(x_{0}) = \frac{\langle O(0)O_{t}(x_{0})\rangle}{\langle O(0)O(x_{0})\rangle} \left(\frac{\langle A(0)A(x_{0})\rangle}{\langle A(0)A_{t}(x_{0})\rangle}\right)^{n_{O}/n_{A}} = t^{\gamma_{O}}$$

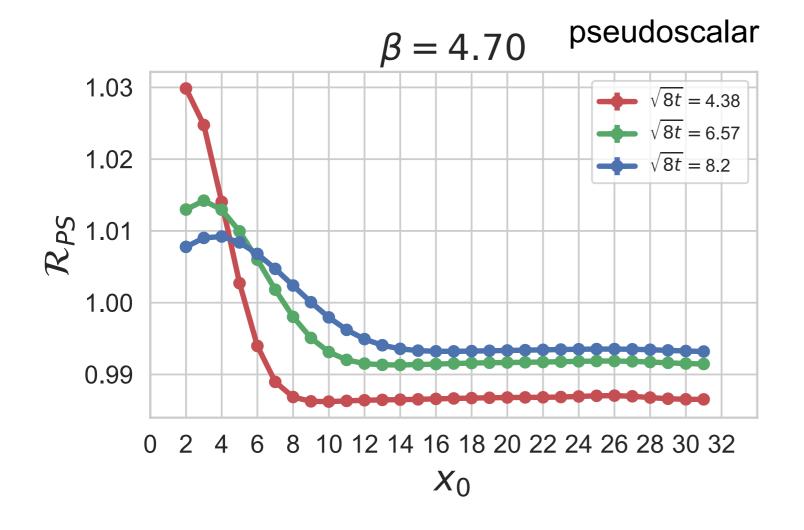
predicts anomalous dimension

N_f=2 anomalous dimension

Super-ratio

$$\mathcal{R}_{t}^{O}(x_{0}) = \frac{\langle O(0)O_{t}(x_{0})\rangle}{\langle O(0)O(x_{0})\rangle} \left(\frac{\langle A(0)A(x_{0})\rangle}{\langle A(0)A_{t}(x_{0})\rangle}\right)^{n_{O}/n_{A}} = t^{\gamma_{O}}$$

has no x_0 dependence if $x_0 >> b$

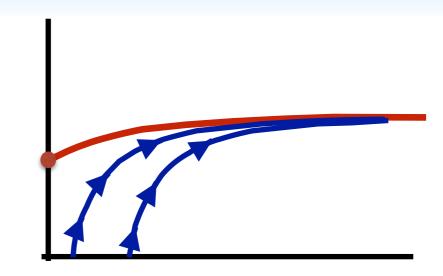


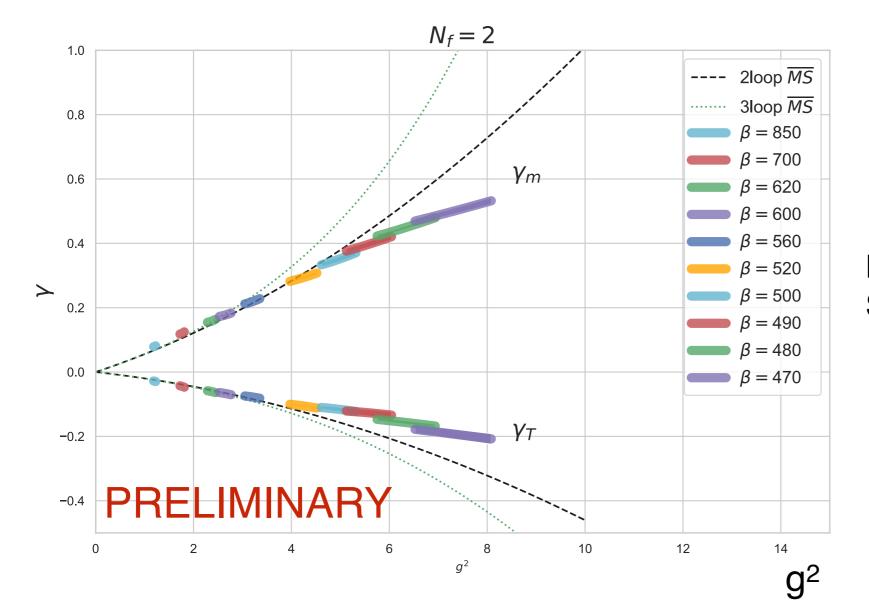
flow time dependence of the plateau gives anomalous dimension

Domain wall

N_f=2 anomalous dimensions

Running anomalous dimension calculation works equally well:

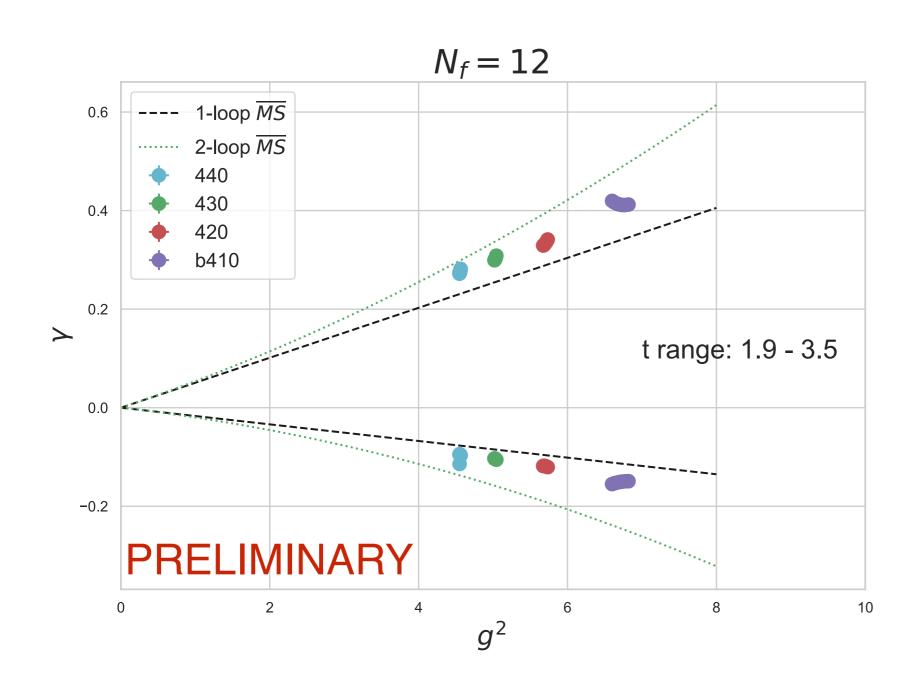




L=24 only Seems to follow 1-loop PT

Domain wall

Running is very slow g^2 vs γ is continuous, RG β fn is needed to find γ_{IRFP} (see poster)



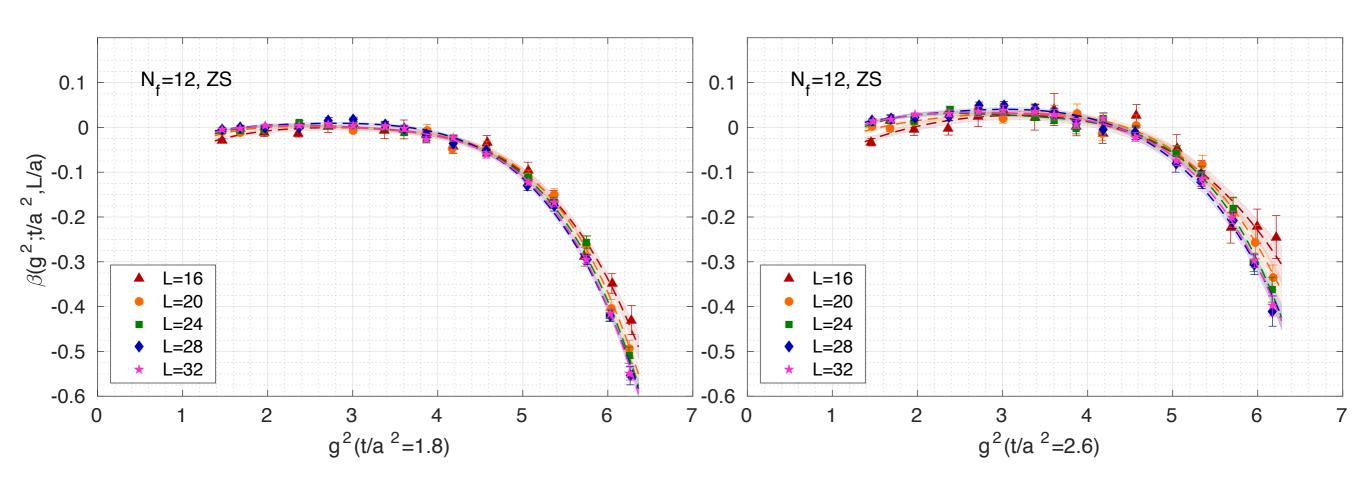
Summary

- GF can be considered as real-space RG:
 - particularly helpful in conformal systems with IRFP
 - GF is continuous, making the RG efficient
- Continuum physics is along RT :
 - Take the L/a→∞ limit while keeping g² and t/a² fixed
 - Take the $a^2/t \rightarrow 0$ continuum limit
- Showed results for the continuous β function and anomalous dimensions in 2-flavor QCD
 - For a more difficult system see poster on N_f=12 flavors
 - O. Witzel's talk on Thursday on N_f=10 flavors
- Existing step scaling GF data are easy to reanalyze

EXTRA SLIDES

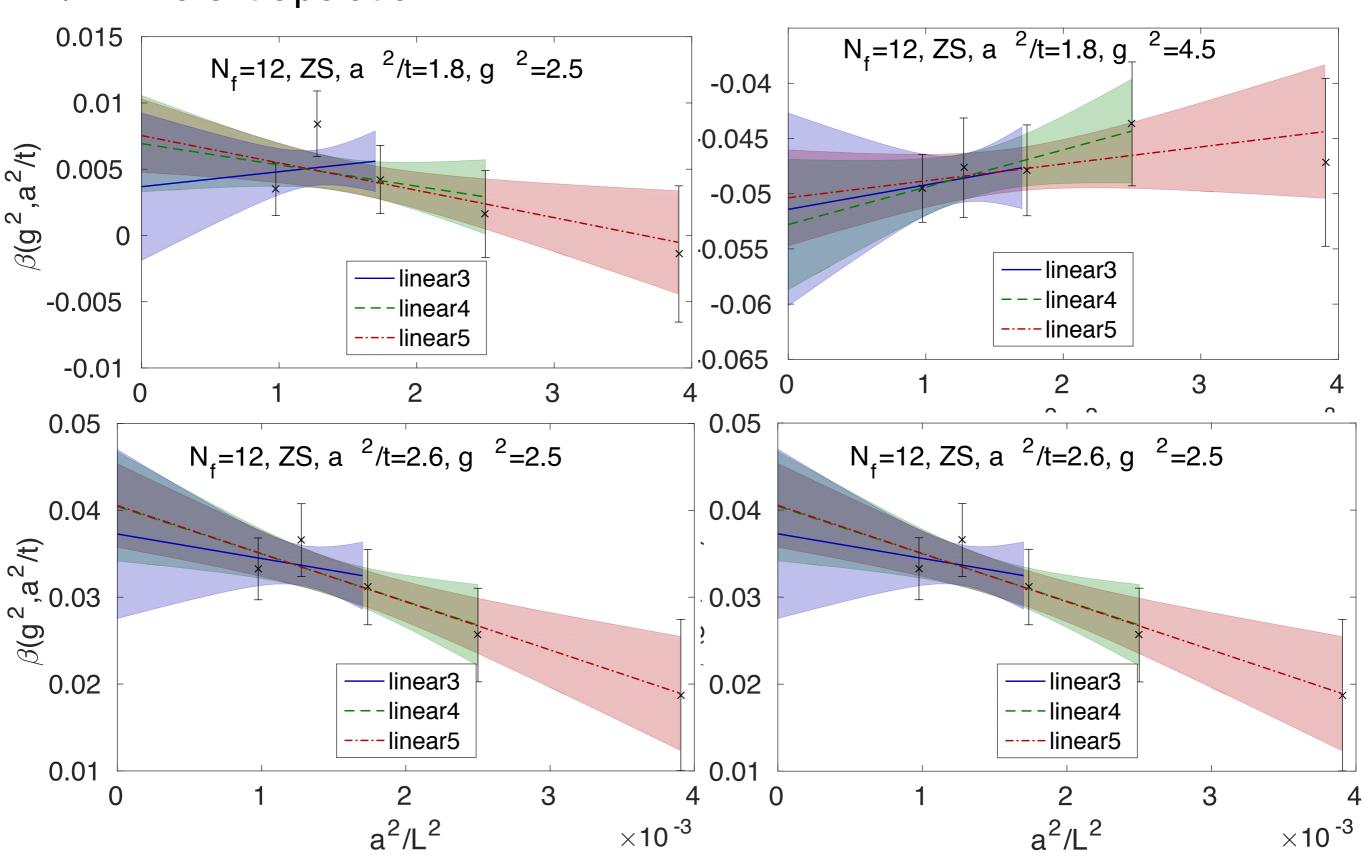
N_f=12 continuous β function

Using existing configurations on L/a = 20,24,28,32 volumes Domain wall fermions, APBC, Zeuthen flow



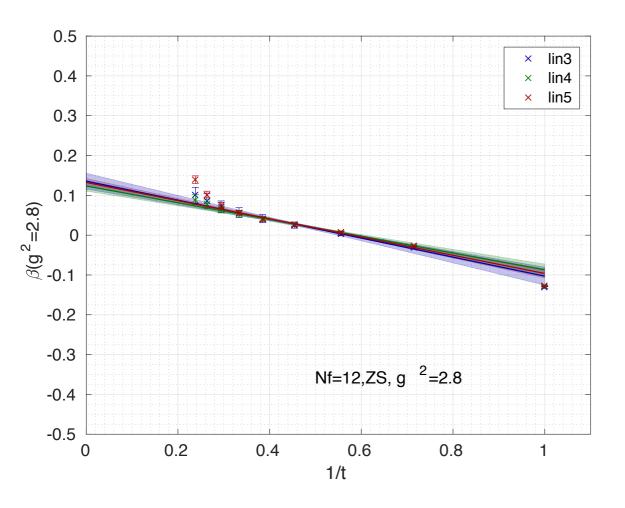
N_f=12 continuous β function

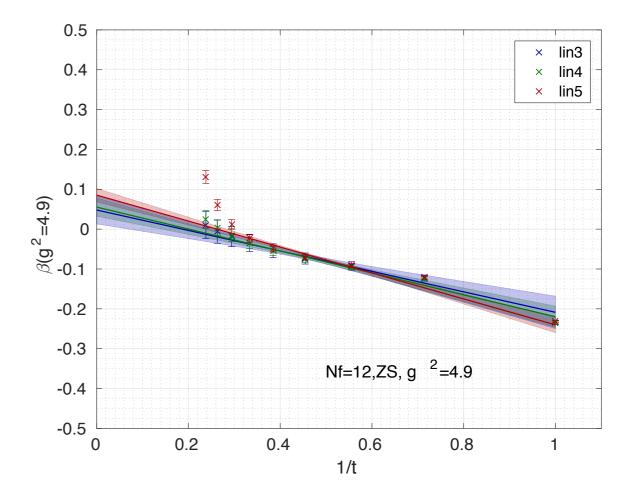
$1/L^2 \rightarrow 0$ extrapolation:



$N_f=12$ continuous β function

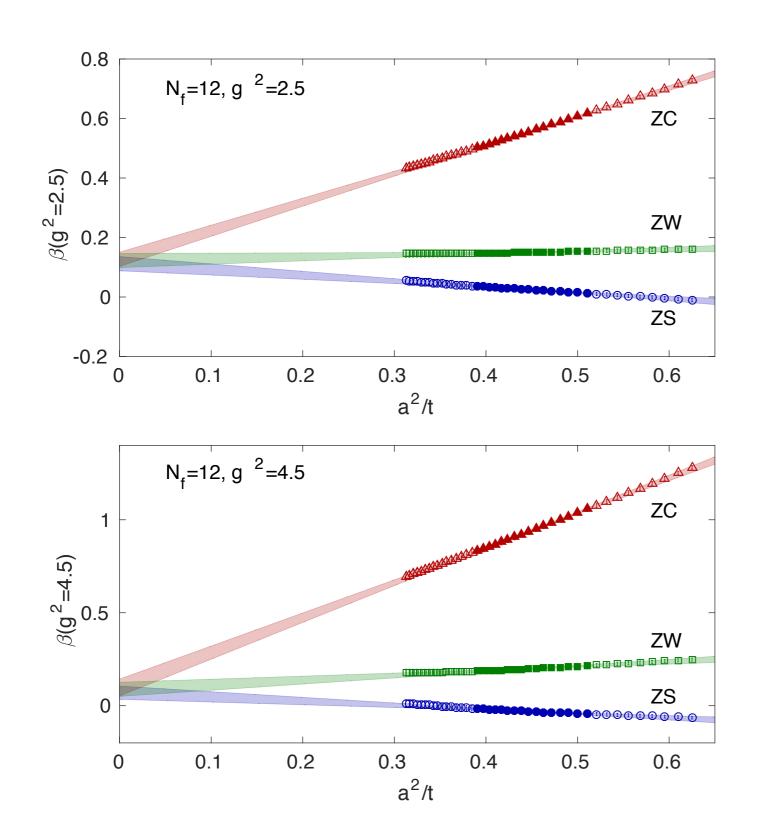
$1/t \rightarrow 0$ extrapolation





N_f=12 continuous β function

 $1/t \rightarrow 0$ continuum extrapolation, 3 operators independently



Continuum limit: $N_f=12$ continuous β function

Various 1/L, 1/t, operator extrapolations

