1

Meson spectrum of large N gauge theories

M. García Pérez, A. González-Arroyo and M. Okawa

Instituto de Física Teórica UAM/CSIC Departamento de Física Teórica, UAM Hiroshima University

June 21, 2019

¹Talk given in Wuhan Lattice2019

M. García Pérez, A. González-Arroyo and M. Okawa

Meson spectrum of large N gauge theories

Large N gauge theories

SU(N) Gauge theories in the limit $N \longrightarrow \infty$ with re-scaled coupling $g^2 \longrightarrow \frac{\lambda}{N}$ and fermions in various representations

Important in their own right

SIMPLER AND RICH

& Connection with Holography/String Theory

Lattice Gauge Theories needed for non-perturbative study

Large N gauge theories

SU(N) Gauge theories in the limit $N \longrightarrow \infty$ with re-scaled coupling $g^2 \longrightarrow \frac{\lambda}{N}$ and fermions in various representations

Important in their own right

SIMPLER AND RICH

& Connection with Holography/String Theory

Lattice Gauge Theories needed for non-perturbative study

METHODOLOGY

- Extrapolation to Large N (Teper, Lucini, Panero, Bali, de Grand, Lopez-Romero, etc)
- With reduced models using Volume independence

QCD in the large N limit 't Hooft limit

 N_f fermions in the fundamental with $N_f/N \longrightarrow 0$ \Rightarrow Fermions are Quenched

Gauge Field Dynamics: TEK Matrix Model (AGA, M. Okawa 1983)

$$Z = \prod_{\mu=0}^{3} \left(\int dV_{\mu}
ight) \, e^{-S_{\mathrm{TEK}}}$$

with

$$S_{\mathrm{TEK}} = -Nb\sum_{\mu,
u} z_{\mu
u} \mathrm{Tr}(V_{\mu}V_{
u}V_{\mu}^{\dagger}V_{
u}^{\dagger})$$

and $z_{\mu\nu}=z^*_{\nu\mu}=e^{2\pi i n_{\mu\nu}/N}$ $N=\hat{L}^2$ $|n_{\mu\nu}|=k\hat{L}$ and $b=1/\lambda_L$

QCD in the large N limit (continued)

Reduction for Wilson loops

$$\lim_{N \longrightarrow \infty} \prod_{P \in \mathcal{S}(\mathcal{C})} (z(P)) \langle \operatorname{Tr}(V(\mathcal{C})) \rangle_{\mathrm{TEK}} \longrightarrow W(\mathcal{C}) \|_{V = \infty; N = \infty}$$

Validity tested

- Non-perturbative proof based on S-D equations
- Perturbative proof to all orders in PT
- Direct verification

	Extrapolated	Matrix Model N=841
Plaquette b=0.36	0.55800(2)	0.557998(5)
3×3 loop b=0.365	0.038592(59)	0.038554(8)
4×4 loop b=0.37	0.009966(45)	0.009926(3)
String tension $\Lambda_{\overline{\mathrm{MS}}}/\sqrt{\sigma}$	0.525(2)	0.523(5)

PROS and CONS of the method

PROS

- Volume reduction valid at the lattice level (artifacts included).
- Continuum limit works as usual $\lim_{N \to \infty} a(b, N) = a_{TEK}(b)$
- Finite N corrections understood:
 - **1** = to finite size effects in a $(\sqrt{N})^4$ lattice
 - 2 Non-Planar suppression which depends of k
- ♣ N values can be rather large ⇒ Good quenched approximation, no chiral logs, no chiral anomaly

PROS and CONS of the method

PROS

- Volume reduction valid at the lattice level (artifacts included).
- Continuum limit works as usual $\lim_{N \to \infty} a(b, N) = a_{TEK}(b)$
- Finite N corrections understood:
 - **①** \equiv to finite size effects in a $(\sqrt{N})^4$ lattice
 - 2 Non-Planar suppression which depends of k
- ♣ N values can be rather large ⇒ Good quenched approximation, no chiral logs, no chiral anomaly

But REMEMBER $\sqrt{N}a(b) \gg 1/\Lambda_{\rm QCD}$

PROS and CONS of the method

PROS

- Volume reduction valid at the lattice level (artifacts included).
- Continuum limit works as usual $\lim_{N \to \infty} a(b, N) = a_{TEK}(b)$
- Finite N corrections understood:
 - **1** = to finite size effects in a $(\sqrt{N})^4$ lattice
 - 2 Non-Planar suppression which depends of k
- ♣ N values can be rather large ⇒ Good quenched approximation, no chiral logs, no chiral anomaly

But REMEMBER $\sqrt{N}a(b) \gg 1/\Lambda_{\rm QCD}$

CONS

★ 1/N corrections different (Non-commutative field theory)
 ★ Some observables are hard (baryon and glueball masses)

Meson spectrum

Meson masses are interesting observables for which there are estimates/predictions from holography/string theory. One can obtain a compact formula for $\vec{p} = 0$ time correlator of meson operators $\mathbf{O}_{\Gamma}(x) = \bar{\Psi}(x)\Gamma\Psi(x)$ for TEK:

$$C_{\Gamma\Gamma'}(t) = \sum_{p_0} e^{i \rho_0 t} \operatorname{Tr}(\Gamma D^{-1}(p_0) \Gamma' D^{-1}(0))$$

 $D(p_{\mu}) =$ lattice Dirac operator of a single-site with $U_{\mu} \longrightarrow V_{\mu} \otimes \Gamma_{\mu}^{*} e^{ip_{\mu}}$. *D* is an $N^{2} \times N^{2}$ matrix. The method applies for *D* being Wilson-Dirac, twisted mass, overlap, staggered, improved, ... Fermions living in an effective box of size $2\sqrt{N} \times (\sqrt{N})^{3}$

Motivation	Volume reduction method	$N_f = 0$ meson results	Other gauge theories
This work			

- 800 gauge configurations $N = 289 = 17^2$ Wilson fermions at 4 values of *b* (0.355,0.36, 0.365, 0.370) \Rightarrow $a\sqrt{\sigma} = 0.241, 0.2058, 0.1783, 0.1573$
- Wilson fermions for 5-7 kappa values
- Local Meson operators (π ρ a₁ b₁) at 12 different spatial smearing levels
- Solution Lowest masses extracted from variational method
- Full analysis of systematic errors: Comparison to N = 169 = 13², extension to 3200 configurations, tests of inversion, mass determination method, etc

Motivation

RESULTS: Sample Correlators of optimal operator

Motivation

Other gauge theories

RESULTS: Pion mass and Chiral symmetry (wilson)

RESULTS: Twisted Mass

RESULTS: Vector mass

RESULTS: Axial vector a_1

RESULTS: Axial vector b_1

Motivation

RESULTS: Scalar a₀

Results: Masses in the chiral and continuum limit

★ Masses linear in m_{PCAC} obtained by simultaneous fit to b=0.360 and 0.365 (Preliminary)

	slope	mass/ $\sqrt{\sigma}$	Bali et al
ρ	2.42(12)	1.66(7)(5)	1.538(7)
<i>a</i> 0	3.53(22)	2.20(5)(4)	2.40(4)
a ₁	2.32(15)	2.99(8)(2)	2.86(2)
b_1	2.22(17)	3.20(12)(18)	2.90(2)

 Renormalization constants and Decay constants also determined

RESULTS: Scaling and continuum limit

Large N theories with dynamical fermions

There are other interesting theories with dynamical quark fields that can be studied:

- **\clubsuit** With N_f/N finite: Veneziano limit
- With quarks in the two-index antisymmetric: a different large N limit of QCD (Corrigan-Ramond).
- With N_f fermions in the adjoint representation (GA Okawa 2013):
 - () $N_f = 1/2$: $\mathcal{N} = 1$ SUSY Yang-Mills
 - *N_f* = 1: Orientifold planar equivalence to Corrigan-Ramond (*Armoni-Shifman-Veneziano*)
 - **③** $N_f = 2$: Within the conformal window (infrared fixed point)

Mass anomalous dimension for $N_f = 2$: $\gamma_* = 0.269 \pm 0.002 \pm 0.05$ (Garcia Perez, GA, Keegan, Okawa 2015 Mesons of "additional" fundamental guarks

Mesons of fundamental quarks in $N_f = 2$ Adjoint QCD

CONCLUSIONS

- Use of reduced models is a competitive method to determine observables for large N gauge theories. This is complementary to the extrapolation method.
- The meson spectrum can be obtained with quite high precision
- Twisted mass correlators are very well behaved
- Spectrum results for large N QCD in the continuum limit are obtained.
- A Theories with dynamical fermions are accesible with this method. Results for $N_f = 2$ adjoint QCD will follow soon.
- Other interesting developments: NSPT (AGA, I. Kanamori, K-I Ishikawa, K. Miyahana, M. Okawa, R. Ueno)