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Motivation for the canonical formulation

▸ Consider the grand-canonical partition function at finite µ:

ZGC(µ) = Tr [e−H(µ)/T
] = Tr∏

t

Tt(µ)

▸ The sign problem at finite density is a manifestation of huge
cancellations between different states:

▸ all states are present for any µ and T
▸ some states need to cancel out at different µ and T

▸ In the canonical formulation:

ZC(Nf ) = TrNf
[e−H/T

] = Tr∏
t

T
(Nf )

t

▸ dimension of Fock space tremendously reduced
▸ less cancellations necessary
▸ e.g. ZQCD

C (NQ) = 0 for NQ ≠ 0 mod Nc



Motivation for the canonical formulation

Canonical transfer matrices can be obtained explicitly!

▸ Based on the dimensional reduction of the fermion
determinant [Alexandru, Wenger ’10; Nagata, Nakamura ’10]

▸ Identification of transfer matrices:
▸ QCD [Alexandru, Wenger ’10]

▸ QCD in the heavy-dense limit
▸ absence of the sign problem at strong coupling
▸ solution of the sign problem in the 3-state Potts model

[Alexandru, Bergner, Schaich, Wenger ’18]

▸ SUSY QM and SUSY Yang-Mills QM
[Baumgartner, Steinhauer, Wenger ’12-’15]

▸ solution of the sign problem
▸ connection with (dual) fermion loop formulation



Motivation for the canonical formulation

▸ Close connection to
▸ (dual) fermion loop or worldline formulation

⇒ worm algorithm

▸ fermion bag approach.

▸ Moreover,
▸ fermionic degrees of freedom are local occupation numbers
nx = 0,1 ,

▸ allows local (multi-level) update schemes,

▸ improved estimators for fermionic correlation functions,

▸ integrating out auxiliary fields in some cases possible:
⇒ e.g., the HS field in the Hubbard model



Hamiltonian and partition functions

▸ Consider the Hamiltonian for the Hubbard model

H(µ) = − ∑

⟨x,y⟩,σ

tσ ĉ
†
x,σ ĉy ,σ +∑

x,σ

µσNx,σ +U∑
x

Nx,↑Nx,↓

with particle number Nx ,σ = ĉ†
x ,σ ĉx ,σ.

▸ The partition function is

ZGC(µ) = Tr [e−H(µ)/T
]

= ∑

{Nσ}

e−∑σ Nσµσ/T
⋅ ZC({Nσ})

where ZC({Nσ}) = Tr∏t T
({Nσ})
t .



Coherent state representation and field theory

▸ Trotter decomposition and coherent state representation yields

ZGC(µ) = ∫ Dψ
†
Dψe−S[ψ

†,ψ;µ]

with Euclidean action

S[ψ†, ψ;µ] = ∑
σ

ψ†
σ∇tψσ +H[ψ†, ψ;µ] .

▸ After a Hubbard-Stratonovich transformation we have

ZGC(µ) = ∫ Dψ
†
DψDφρ[φ]e−∑σ S[ψ†

σ,ψσ,φ;µσ]

with S[ψ†
σ, ψσ, φ;µσ] = ψ

†
σM[φ;µσ]ψσ, and hence

= ∫ Dφρ[φ]∏
σ

detM[φ;µσ] .



Fermion matrix and dimensional reduction

▸ The fermion matrix has the structure

M[φ;µσ] =

⎛

⎜
⎜
⎜

⎝

B 0 . . . ±eµσC(φNt−1)

−eµσC(φ0) B . . . 0
⋮ ⋱ ⋱ ⋮

0 . . . −eµσC(φNt−2) B

⎞

⎟
⎟
⎟

⎠

for which the determinant can be reduced to

detM[φ;µσ] = detBNt
⋅ det (1 ∓ eNtµσ

T [φ])

where T [φ] = B−1C(φNt−1) ⋅ . . . ⋅B
−1C(φ0).

▸ Fugacity expansion yields the canonical determinants

detMNσ [φ] = ∑
J

detT /J /J
[φ] = Tr [∏

t

T
(Nσ)
t ] .

where detT /J /J is the principal minor of order Nσ.



Canonical determinants and transfer matrices

▸ Canonical determinant:

detMNσ [φ] = ∑
J

detT /J /J
[φ] = Tr [∏

t

T
(Nσ)
t ]

▸ states are labeled by index sets

J ⊂ {1, . . . ,Ls}, ∣J ∣ = Nσ

▸ number of states grows exponentially with Ls at half-filling

Nstates = (
Ls
Nσ

) = Nprincipal minors

▸ sum can be evaluated stochastically with MC



Transfer matrices

▸ Use Cauchy-Binet formula

det(A ⋅B)
/I /K

= detA /I /J
⋅ detB /J /K

to factorize into product of transfer matrices

▸ Transfer matrices are hence given by

(Tt)IK = detB ⋅ det [B−1
⋅ C(φt)]

/I /K

= detB ⋅ det(B−1
)
/I /J
⋅ detC(φt)

/J /K

▸ Moreover, using the complementary cofactor we get

detB ⋅ det(B−1
)
/J /I
= (−1)p(I ,J) detB IJ

where p(I , J) = ∑i(Ii + Ji).



Transfer matrices

▸ Since C(φt) can be chosen diagonal, we have

detC(φt)
/J /K

= δJK∏
x∉J

φx,t

and the HS field can be integrated out site by site:

∫ dφx,t ρ(φx,t)φ
∑σ δx∉Jσ
x,t ≡ wx,t =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

w2 if x ∉ J↑, x ∉ J↓

w1 else
w0 if x ∈ J↑, x ∈ J↓

▸ Finally, with ∏x wx,t ≡W ({Jσt }) we have

ZC({Nσ}) = ∑
{Jσt }

∏

t

(∏

σ

detBJσt−1J
σ
t )W ({Jσt }) , ∣Jσt ∣ = Nσ



Relation to fermion loop formulation

ZC({Nσ}) = ∑
{Jσt }

∏

t

(∏

σ

detBJσt−1J
σ
t )W ({Jσt })

index sets Jt :

{3,6}

{4,5}

{4,5}

{2,7}

{2,7}

{3,7}



Relation to fermion bag formulation

▸ In d = 1 dimension the ’fermion bags’ detB IJ can be
calculated analytically:

and one can prove that

detB IJ
≥ 0 for open b.c.

⇒ there is no sign problem

▸ For periodic b.c. there is no sign problem either, because

Z pbc
C (Ls →∞) = Z obc

C (Ls →∞)



Sign problem in d = 1 dimension

▸ In the thermodynamic limit Ls/T →∞ the sign problem is
absent for pbc:
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The ground state energy

▸ The energy of the ground state is defined by

E0 = − lim
β→∞

∂

∂β
lnZ(β)

and the derivative can be written on the lattice as

−

∂

∂β
lnZ(β) → −

lnZ(Lt+1) − lnZ(Lt)

δt

such that

E0 = lim
Lt→∞

1

δt
ln

Z(Lt)

Z(Lt+1)

▸ Since our formulation is factorized in time, we have

ZC(Lt)

ZC(Lt+1)
= ⟨∏

σ

(

detBJσt−1J
σ
t+1

detBJσt−1J
σ
t detBJσt Jσt+1

)

1

W ({Jσt })

⟩

ZC (Lt+1)



The ground state energy
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Chemical potentials

▸ The chemical potentials µ(s) are defined as

µ(s) =
∂F (n(s))

∂n(s)
with n(s) = N↑ ±N↓

which on the lattice can be written as, e.g.,

µ =

F (n + 2,ns) − F (n,ns)

2
= −

1

2β
ln(

Z(n + 2,ns)

Z(n,ns)
)

▸ Now define the partition function for the fermionic 2-pt. fct.

Z 2-pt.,↑
t ({Nσ}) = Tr [P†

∏

t′<t

T
{N↑+1,N↓}
t′ P ⋅ ∏

t′≥t

T
{Nσ}
t′ ] = ⟪ψ†

0ψt⟫{Nσ}



Chemical potentials and telescope product

▸ then the chemical potential can be expressed

e−2µ/T =

Z(n + 2,ns)

Z(n,ns)
=

Z(n + 1,ns + 1)

Z(n,ns)
⋅

Z(n + 2,ns)

Z(n + 1,ns + 1)

=

Z 2-pt.,↑
0

Z(n,ns)
⋅

Z 2-pt.,↑
1

Z 2-pt.,↑
0

⋅

Z 2-pt.,↑
2

Z 2-pt.,↑
1

⋅ . . . ⋅
Z(n + 1,ns + 1)

Z 2-pt.,↑
Lt−1

×

Z 2-pt.,↓
0

Z(n + 1,ns + 1)
⋅

Z 2-pt.,↓
1

Z 2-pt.,↓
0

⋅ . . . ⋅
Z(n + 2,ns)

Z 2-pt.,↓
Lt−1

where each ratio can be written as an expectation value, e.g.,

Z 2-pt.,↑
t+1

Z 2-pt.,↑
t

= ⟨

∑{J′t+1}
detBJ′t

↑J′t+1 ⋅W ({J ′t
↑, J↓t })

∑{Jt} detBJtJt+1↑ ⋅W ({Jt , Jt ↓})
⟩

Z 2-pt.,↑
t

where ∣J ′t+1∣ = ∣Jt ∣ + 1 = N↑ + 1.



Chemical potential at N/Ls = 1/2,Ls = 6,g = 1.0, γ = 0.1



Conclusions

▸ The Hubbard model

H(µ) = − ∑

⟨x,y⟩,σ

tσ ĉ
†
x,σ ĉy ,σ +∑

x,σ

µσNx,σ +U∑
x

Nx,↑Nx,↓

in the canonical formulation

ZC({Nσ}) = Tr{Nσ} [e
−H/T

] = Tr∏
t

T
{(Nσ)}
t

Canonical transfer matrices can be obtained explicitly!

▸ Hubbard-Stratonovich field can be integrated out,
▸ only degrees of freedom are discrete index sets.


