# The Hubbard model in the canonical formulation

#### Urs Wenger

Albert Einstein Center for Fundamental Physics University of Bern



in collaboration with MSc Sebastian Burri

Lattice 19, 19 June 2019, Wuhan

### Motivation for the canonical formulation

• Consider the grand-canonical partition function at finite  $\mu$ :

$$Z_{\mathsf{GC}}(\mu) = \mathsf{Tr}\left[e^{-\mathcal{H}(\mu)/\mathcal{T}}\right] = \mathsf{Tr}\prod_{t}\mathcal{T}_{t}(\mu)$$

- The sign problem at finite density is a manifestation of huge cancellations between different states:
  - all states are present for any  $\mu$  and T
  - some states need to cancel out at different  $\mu$  and  ${\it T}$
- In the canonical formulation:

$$Z_{\mathsf{C}}(N_f) = \mathsf{Tr}_{N_f}\left[e^{-\mathcal{H}/\mathcal{T}}\right] = \mathsf{Tr}\prod_t \mathcal{T}_t^{(N_f)}$$

- dimension of Fock space tremendously reduced
- less cancellations necessary
- e.g.  $Z_{C}^{QCD}(N_{Q}) = 0$  for  $N_{Q} \neq 0 \mod N_{c}$

# Motivation for the canonical formulation

#### Canonical transfer matrices can be obtained explicitly!

- Based on the dimensional reduction of the fermion determinant [Alexandru, Wenger '10; Nagata, Nakamura '10]
- Identification of transfer matrices:
  - QCD [Alexandru, Wenger '10]
  - QCD in the heavy-dense limit
    - absence of the sign problem at strong coupling
    - solution of the sign problem in the 3-state Potts model [Alexandru, Bergner, Schaich, Wenger '18]
  - SUSY QM and SUSY Yang-Mills QM [Baumgartner, Steinhauer, Wenger '12-'15]
    - solution of the sign problem
    - connection with (dual) fermion loop formulation

# Motivation for the canonical formulation

- Close connection to
  - (dual) fermion loop or worldline formulation
    ⇒ worm algorithm
  - fermion bag approach.
- Moreover,
  - fermionic degrees of freedom are local occupation numbers  $n_x = 0, 1$ ,
  - allows local (multi-level) update schemes,
  - improved estimators for fermionic correlation functions,
  - integrating out auxiliary fields in some cases possible:
    ⇒ e.g., the HS field in the Hubbard model

### Hamiltonian and partition functions

Consider the Hamiltonian for the Hubbard model

$$\mathcal{H}(\mu) = -\sum_{\langle x, y \rangle, \sigma} t_{\sigma} \, \hat{c}_{x, \sigma}^{\dagger} \hat{c}_{y, \sigma} + \sum_{x, \sigma} \mu_{\sigma} N_{x, \sigma} + U \sum_{x} N_{x, \uparrow} N_{x, \downarrow}$$

with particle number  $N_{x,\sigma} = \hat{c}_{x,\sigma}^{\dagger} \hat{c}_{x,\sigma}$ .

The partition function is

$$Z_{GC}(\mu) = \operatorname{Tr}\left[e^{-\mathcal{H}(\mu)/T}\right]$$
$$= \sum_{\{N_{\sigma}\}} e^{-\sum_{\sigma} N_{\sigma} \mu_{\sigma}/T} \cdot Z_{C}(\{N_{\sigma}\})$$

where  $Z_C(\{N_\sigma\}) = \operatorname{Tr} \prod_t \mathcal{T}_t^{(\{N_\sigma\})}$ .

#### Coherent state representation and field theory

Trotter decomposition and coherent state representation yields

$$Z_{\rm GC}(\mu) = \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi e^{-S[\psi^{\dagger},\psi;\mu]}$$

with Euclidean action

$$S[\psi^{\dagger},\psi;\mu] = \sum_{\sigma} \psi^{\dagger}_{\sigma} \nabla_{t} \psi_{\sigma} + H[\psi^{\dagger},\psi;\mu].$$

· After a Hubbard-Stratonovich transformation we have

$$Z_{\mathsf{GC}}(\mu) = \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi \mathcal{D}\phi \rho[\phi] e^{-\sum_{\sigma} S[\psi^{\dagger}_{\sigma}, \psi_{\sigma}, \phi; \mu_{\sigma}]}$$

with  $S[\psi_{\sigma}^{\dagger}, \psi_{\sigma}, \phi; \mu_{\sigma}] = \psi_{\sigma}^{\dagger} M[\phi; \mu_{\sigma}] \psi_{\sigma}$ , and hence

$$= \int \mathcal{D}\phi \,\rho[\phi] \prod_{\sigma} \det M[\phi;\mu_{\sigma}].$$

### Fermion matrix and dimensional reduction

The fermion matrix has the structure

$$M[\phi; \mu_{\sigma}] = \begin{pmatrix} B & 0 & \dots & \pm e^{\mu_{\sigma}} C(\phi_{N_{t}-1}) \\ -e^{\mu_{\sigma}} C(\phi_{0}) & B & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & -e^{\mu_{\sigma}} C(\phi_{N_{t}-2}) & B \end{pmatrix}$$

for which the determinant can be reduced to

$$\det M[\phi; \mu_{\sigma}] = \det B^{N_t} \cdot \det \left(1 \mp e^{N_t \mu_{\sigma}} \mathcal{T}[\phi]\right)$$

where  $T[\phi] = B^{-1}C(\phi_{N_t-1}) \cdot ... \cdot B^{-1}C(\phi_0)$ .

Fugacity expansion yields the canonical determinants

$$\det M_{N_{\sigma}}[\phi] = \sum_{J} \det \mathcal{T}^{\mathfrak{U}}[\phi] = \operatorname{Tr}\left[\prod_{t} \mathcal{T}_{t}^{(N_{\sigma})}\right].$$

where det  $\mathcal{T}^{\chi\chi}$  is the principal minor of order  $N_{\sigma}$ .

#### Canonical determinants and transfer matrices

Canonical determinant:

$$\det M_{N_{\sigma}}[\phi] = \sum_{J} \det \mathcal{T}^{\mathfrak{U}}[\phi] = \mathsf{Tr}\left[\prod_{t} \mathcal{T}_{t}^{(N_{\sigma})}\right]$$

states are labeled by index sets

$$J \subset \{1, \ldots, L_s\}, \quad |J| = N_{\sigma}$$

• number of states grows exponentially with  $L_s$  at half-filling

$$N_{\text{states}} = \begin{pmatrix} L_s \\ N_\sigma \end{pmatrix} = N_{\text{principal minors}}$$

sum can be evaluated stochastically with MC

# **Transfer matrices**

Use Cauchy-Binet formula

$$\det(A \cdot B)^{\lambda \not k} = \det A^{\lambda \not \lambda} \cdot \det B^{\lambda \not k}$$

to factorize into product of transfer matrices

Transfer matrices are hence given by

$$(\mathcal{T}_t)_{IK} = \det B \cdot \det \left[ B^{-1} \cdot C(\phi_t) \right]^{\lambda \not k}$$
$$= \det B \cdot \det (B^{-1})^{\lambda \not k} \cdot \det C(\phi_t)^{\eta \not k}$$

Moreover, using the complementary cofactor we get

$$\det B \cdot \det(B^{-1})^{\mathsf{Y}} = (-1)^{p(I,J)} \det B^{IJ}$$

where  $p(I, J) = \sum_{i} (I_i + J_i)$ .

### **Transfer matrices**

• Since  $C(\phi_t)$  can be chosen diagonal, we have

$$\det C(\phi_t)^{\mathcal{Y}_{\mathcal{K}}} = \delta_{J\mathcal{K}} \prod_{x \notin J} \phi_{x,t}$$

and the HS field can be integrated out site by site:

$$\int d\phi_{x,t} \,\rho(\phi_{x,t}) \,\phi_{x,t}^{\sum_{\sigma} \delta_{x\notin J^{\sigma}}} \equiv w_{x,t} = \begin{cases} w_2 & \text{if } x \notin J^{\uparrow}, x \notin J^{\downarrow} \\ w_1 & \text{else} \\ w_0 & \text{if } x \in J^{\uparrow}, x \in J^{\downarrow} \end{cases}$$

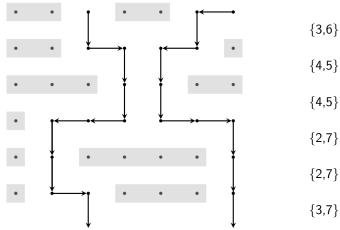
• Finally, with  $\prod_{x} w_{x,t} \equiv W(\{J_t^{\sigma}\})$  we have

$$Z_{C}(\{N_{\sigma}\}) = \sum_{\{J_{t}^{\sigma}\}} \prod_{t} \left( \prod_{\sigma} \det B^{J_{t-1}^{\sigma}J_{t}^{\sigma}} \right) W(\{J_{t}^{\sigma}\}), \quad |J_{t}^{\sigma}| = N_{\sigma}$$

# Relation to fermion loop formulation

$$Z_{C}(\{N_{\sigma}\}) = \sum_{\{J_{t}^{\sigma}\}} \prod_{t} \left(\prod_{\sigma} \det B^{J_{t-1}^{\sigma}J_{t}^{\sigma}}\right) W(\{J_{t}^{\sigma}\})$$

index sets  $J_t$ :



### Relation to fermion bag formulation

In d = 1 dimension the 'fermion bags' det B<sup>IJ</sup> can be calculated analytically:

and one can prove that

det  $B^{IJ} \ge 0$  for open b.c.

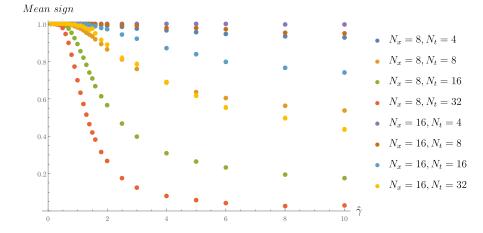
 $\Rightarrow$  there is no sign problem

• For periodic b.c. there is no sign problem either, because

$$Z_C^{\rm pbc}(L_s \to \infty) = Z_C^{\rm obc}(L_s \to \infty)$$

# Sign problem in d = 1 dimension

• In the thermodynamic limit  $L_s/T \rightarrow \infty$  the sign problem is absent for pbc:



# The ground state energy

The energy of the ground state is defined by

$$E_0 = -\lim_{\beta \to \infty} \frac{\partial}{\partial \beta} \ln Z(\beta)$$

and the derivative can be written on the lattice as

$$-\frac{\partial}{\partial\beta}\ln Z(\beta) \to -\frac{\ln Z(L_{t+1}) - \ln Z(L_t)}{\delta t}$$

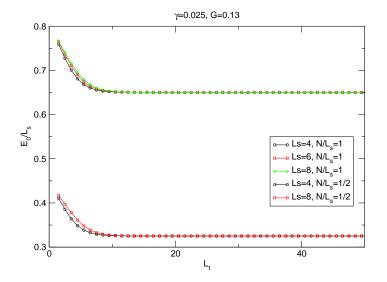
such that

$$E_0 = \lim_{L_t \to \infty} \frac{1}{\delta t} \ln \frac{Z(L_t)}{Z(L_{t+1})}$$

· Since our formulation is factorized in time, we have

$$\frac{Z_C(L_t)}{Z_C(L_{t+1})} = \left\langle \prod_{\sigma} \left( \frac{\det B^{J_{t-1}^{\sigma} J_{t+1}^{\sigma}}}{\det B^{J_{t-1}^{\sigma} J_{t}^{\sigma}} \det B^{J_{t}^{\sigma} J_{t+1}^{\sigma}}} \right) \frac{1}{W(\{J_t^{\sigma}\})} \right\rangle_{Z_C(L_{t+1})}$$

# The ground state energy



# Chemical potentials

- The chemical potentials  $\mu_{(s)}$  are defined as

$$\mu_{(s)} = \frac{\partial F(n_{(s)})}{\partial n_{(s)}} \quad \text{with } n_{(s)} = N_{\uparrow} \pm N_{\downarrow}$$

which on the lattice can be written as, e.g.,

$$\mu = \frac{F(n+2, n_s) - F(n, n_s)}{2} = -\frac{1}{2\beta} \ln \left( \frac{Z(n+2, n_s)}{Z(n, n_s)} \right)$$

• Now define the partition function for the fermionic 2-pt. fct.

$$Z_t^{2-\mathsf{pt.},\uparrow}(\{N_\sigma\}) = \mathsf{Tr}\left[P^{\dagger}\prod_{t'< t}\mathcal{T}_{t'}^{\{N_{\dagger}+1,N_{\downarrow}\}}P \cdot \prod_{t'\geq t}\mathcal{T}_{t'}^{\{N_{\sigma}\}}\right] = \langle\!\langle \psi_0^{\dagger}\psi_t \rangle\!\rangle_{\{N_{\sigma}\}}$$

#### Chemical potentials and telescope product

then the chemical potential can be expressed

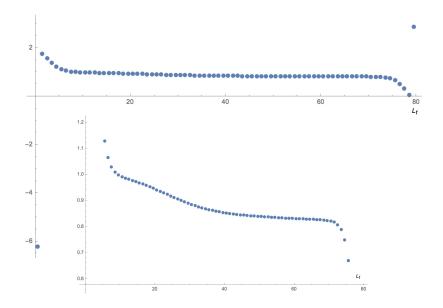
$$e^{-2\mu/T} = \frac{Z(n+2,n_s)}{Z(n,n_s)} = \frac{Z(n+1,n_s+1)}{Z(n,n_s)} \cdot \frac{Z(n+2,n_s)}{Z(n+1,n_s+1)}$$
$$= \frac{Z_0^{2-\text{pt.},\uparrow}}{Z(n,n_s)} \cdot \frac{Z_1^{2-\text{pt.},\uparrow}}{Z_0^{2-\text{pt.},\uparrow}} \cdot \frac{Z_2^{2-\text{pt.},\uparrow}}{Z_1^{2-\text{pt.},\uparrow}} \cdot \dots \cdot \frac{Z(n+1,n_s+1)}{Z_{Lt-1}^{2-\text{pt.},\uparrow}}$$
$$\times \frac{Z_0^{2-\text{pt.},\downarrow}}{Z(n+1,n_s+1)} \cdot \frac{Z_1^{2-\text{pt.},\downarrow}}{Z_0^{2-\text{pt.},\downarrow}} \cdot \dots \cdot \frac{Z(n+2,n_s)}{Z_{Lt-1}^{2-\text{pt.},\downarrow}}$$

where each ratio can be written as an expectation value, e.g.,

$$\frac{Z_{t+1}^{2\text{-pt.},\uparrow}}{Z_t^{2\text{-pt.},\uparrow}} = \left(\frac{\sum_{\{J_{t+1}'\}} \det B^{J_t^{\prime\uparrow}J_{t+1}^{\prime}} \cdot W(\{J_t^{\prime\uparrow},J_t^{\downarrow}\})}{\sum_{\{J_t\}} \det B^{J_tJ_{t+1}^{\dagger}} \cdot W(\{J_t,J_t^{\downarrow}\})}\right)_{Z_t^{2\text{-pt.},\uparrow}}$$

where  $|J'_{t+1}| = |J_t| + 1 = N_{\uparrow} + 1$ .

# Chemical potential at $N/L_s = 1/2, L_s = 6, g = 1.0, \gamma = 0.1$



# Conclusions

The Hubbard model

$$\mathcal{H}(\mu) = -\sum_{\langle x,y \rangle,\sigma} t_{\sigma} \, \hat{c}^{\dagger}_{x,\sigma} \hat{c}_{y,\sigma} + \sum_{x,\sigma} \mu_{\sigma} N_{x,\sigma} + U \sum_{x} N_{x,\uparrow} N_{x,\downarrow}$$

in the canonical formulation

$$Z_{\mathsf{C}}(\{N_{\sigma}\}) = \mathsf{Tr}_{\{N_{\sigma}\}} \left[ e^{-\mathcal{H}/T} \right] = \mathsf{Tr} \prod_{t} \mathcal{T}_{t}^{\{(N_{\sigma})\}}$$

Canonical transfer matrices can be obtained explicitly!

- · Hubbard-Stratonovich field can be integrated out,
- only degrees of freedom are discrete index sets.