Stabilised Wilson fermions for QCD on very large lattices

A. Francis, P. Fritzsch, M. Lüscher, A. Rago
Master-field & large-scale simulations

Are we well prepared for very large lattices?

\[\sim (V/a^4)^p \]

Known obstacles

- algorithmic stability
 - Hybrid Monte-Carlo algorithm
 - integration schemes
 - global Metropolis accept-reject step
 - ...

- fermion discretisation
 - spectral gap of Dirac operator
 - near zero-modes: MD evolution of smallest eigenvalue
 - solver stopping criteria
 - ...

strongly influence costs & may decrease reliability
Algorithmic improvements for stability

General caveats: volume dependence, sampling, reversibility, … → Suggestion:

Stochastic Molecular Dynamics (SMD) algorithm\(^{[1–4]}\)

Refresh \(\pi(x, \mu), \phi(x)\) by random field rotation

\[
\pi \rightarrow c_1 \pi + c_2 v , \quad c_1 = \exp(-\epsilon \gamma) , \quad c_2 = (1 - c_1^2)^{1/2}
\]

\[
\phi \rightarrow c_1 \phi + c_2 D^\dagger \eta , \quad (\gamma > 0: \text{friction parameter}; \epsilon: \text{MD integration time})
\]

+ MD evolution + accept-reject step + repeat
Algorithmic improvements for stability

General caveats: volume dependence, sampling, reversibility, … → Suggestion:

Stochastic Molecular Dynamics (SMD) algorithm

Refresh \(\pi(x, \mu), \phi(x)\) by random field rotation

\[
\pi \rightarrow c_1 \pi + c_2 v \quad , \quad c_1 = \exp(-\epsilon \gamma) \quad , \quad c_2 = (1 - c_1^2)^{1/2}
\]

\[
\phi \rightarrow c_1 \phi + c_2 D^\dagger \eta \quad , \quad (\gamma > 0: \text{friction parameter}; \epsilon: \text{MD integration time})
\]

+ MD evolution + accept-reject step + repeat

- ergodic\(^{[5]}\) for sufficiently small \(\epsilon\)
- exact algorithm
- significant reduction of unbounded energy violations \(|\Delta H| \gg 1\)
- a bit “slower“ than HMC but compensated by shorter autocorrelation times
- smooth changes in \(\phi_t, U_t\) improve update of deflation subspace
Algorithmic improvements for stability

- Solver stopping criteria

\[\| D\psi - \eta \|_2 \leq \rho \| \eta \|_2 , \quad \| \eta \|_2 = \left(\sum_x (\eta(x), \eta(x)) \right)^{1/2} \propto \sqrt{V} \]

- Global accept-reject step

\[\Delta H \propto \epsilon^p \sqrt{V} \] (numerical precision must increase with \(V \))
Algorithmic improvements for stability

- Solver stopping criteria

\[\| D\psi - \eta \|_2 \leq \rho \| \eta \|_2 , \quad \| \eta \|_2 = \left(\sum_x (\eta(x), \eta(x)) \right)^{1/2} \propto \sqrt{V} \]

✓ uniform norm \(\| \eta \|_\infty = \sup_x \| \eta(x) \|_2 \) V-independent

- global accept-reject step

\(\Delta H \propto \epsilon^p \sqrt{V} \)

✓ quadruple precision in global sums

- well-established techniques

✓ SAP, local deflation, multi-grid, mass-preconditioning, multiple time-scales, …
Bulk O(a)-improved Wilson–Dirac operator

\[D = \frac{1}{2} \left\{ \gamma_\mu (\nabla^*_\mu + \nabla_\mu) - a \nabla^*_\mu \nabla_\mu \right\} + ac_{sw} \frac{i}{4} \sigma_{\mu \nu} \hat{F}_{\mu \nu} + m_0 \]

Even-odd preconditioning:

\[\hat{D} = D_{ee} - D_{eo} (D_{oo})^{-1} D_{oe} \]

with diagonal part

\[D_{ee} + D_{oo} = M_0 + c_{sw} \frac{i}{4} \sigma_{\mu \nu} \hat{F}_{\mu \nu} \]

\(M_0 = 4 + m_0 \)

\(\checkmark \) not protected from arbitrarily small eigenvalues

small mass, rough gauge field, large lattice promote instabilities in \((D_{oo})^{-1}\)
Bulk O(a)-improved Wilson–Dirac operator

\[D = \frac{1}{2} \left\{ \gamma_\mu (\nabla^*_\mu + \nabla_\mu) - a \nabla^*_\mu \nabla_\mu \right\} + ac_{sw} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} + m_0 \]

Even-odd preconditioning:

\[\hat{D} = D_{ee} - D_{eo} (D_{oo})^{-1} D_{oe} \]

with diagonal part

\[D_{ee} + D_{oo} = M_0 + c_{sw} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \sim M_0 \exp \left\{ \frac{c_{sw}}{M_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \right\} \]

\(\checkmark \) not protected from arbitrarily small eigenvalues
small mass, rough gauge field, large lattice promote instabilities in \((D_{oo})^{-1}\)

\(\times \) Employ bounded counterterm operator
 - valid Symanzik improvement
 - guarantees invertibility
Improvement coefficient c_{SW}

Revised Wilson–Dirac operator

- $N_f = 3$ simulations with

$$M_0 \exp \left\{ \frac{c_{SW}}{M_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \right\}$$

- tree-level impr. Symanzik gauge
- standard determination$^{[6, 7]}$ in massless Schrödinger Functional
- still employing HMC, …

✓ stable inversions of D_{oo} at any time (1 M traj., $\tau = 2$)
Improvement coefficient c_{SW}

Revised Wilson–Dirac operator

- $N_f = 3$ simulations with

$$M_0 \exp \left\{ \frac{c_{SW}}{M_0} \frac{i}{4} \sigma_{\mu \nu} \hat{F}_{\mu \nu} \right\}$$

- tree-level impr. Symanzik gauge
- standard determination\(^{[6, 7]}\) in massless Schrödinger Functional
- still employing HMC, ...

Comparison with previous result\(^{[8]}\)

- arrows indicate $a \sim 0.095$ fm

$$(c_{sw}^{new} < c_{sw}^{old})$$

- similar picture in $N_f = 0$ theory, with reduction of except. cnfgs.

✓ stable inversions of D_{oo} at any time (1 M traj., $\tau = 2$)
Towards large scale simulations

First investigations with (2+1)-flavour simulations

\[\phi_4 \equiv 8t_0\left(\frac{1}{2}m^2_\pi + m^2_K\right) = \text{const} \sim \text{Tr}[M_q] \]

| \(a/\text{fm} \) | \(\beta \) | \(T \cdot L^3 \) | \(m_\pi \) MeV | \(m_K \) MeV | \(Lm_\pi \) | b.c. | status | \(\langle P_{\text{acc}} \rangle \) | \(P_{|\Delta H| \geq 1} \) |
|-----------------|---------|-----------------|-----------|-----------|-----------|------|--------|----------------|----------------|
| 0.095 | 3.8 | 96 \cdot 32^3 | 410 | 410 | 6.3 | P | ✓ | 97.5% | 0.2% |
| 96 \cdot 32^3 | | 294 | 458 | 4.5 | P | ✓ | 98.6% | 0.1% |
| 96 \cdot 32^3 | | 220 | 478 | 3.4 | P | ✓ | 98.1% | 0.1% |
| 144 \cdot 64^3 | | 135 | 494 | 4.2 | P | tuned| 98.1% | 0.1% |
| 0.064 | 4.0 | 96 \cdot 48^3 | 410 | 410 | 6.4 | P | tuned| | |
| 0.055 | 4.1 | 96 \cdot 48^3 | 410 | 410 | 5.5 | O | therm.| | |

to be compared to Coordinated Lattice Simulations (CLS) effort[9–11]

\(\beta = 3.8 \) SMD simulations: \((\gamma = 0.3, \epsilon = 0.31, 2\text{-lvOMF-4, } N_{pf} \leq 8, R_{\text{deg}} \leq 10) \)
Towards large scale simulations

First investigations with (2+1)-flavour simulations

\[
\phi_4 \equiv 8t_0(\frac{1}{2}m_{\pi}^2 + m_{K}^2) = \text{const} \sim \text{Tr}[M_q]
\]

| \(a/\text{fm}\) | \(\beta\) | \(T \cdot L^3\) | \(m_{\pi}\) MeV | \(m_{K}\) MeV | \(Lm_{\pi}\) | b.c. | status | \(\langle P_{\text{acc}} \rangle\) | \(P_{|\Delta H| \geq 1}\) |
|---|---|---|---|---|---|---|---|---|---|
| 0.095 | 3.8 | 96 \cdot 32^3 | 410 | 410 | 6.3 | P | ✓ | 97.5\% | 0.2\% |
| 0.064 | 4.0 | 96 \cdot 48^3 | 410 | 410 | 6.4 | P | tuned | 98.1\% | 0.1\% |
| 0.055 | 4.1 | 96 \cdot 48^3 | 410 | 410 | 5.5 | O | therm. | |

To be compared to Coordinated Lattice Simulations (CLS) effort\[^{[9-11]}\]

\(\beta = 3.8\) SMD simulations: \((\gamma = 0.3, \epsilon = 0.31, 2\text{-lv OM}F-4, N_{\text{pf}} \leq 8, R_{\text{deg}} \leq 10)\)

Physical \(m_{\pi}\) possible at such coarse lattice spacing (CL scaling missing)
Towards large scale simulations

How does the lowest eigenvalue distribution scale with quark mass?

\[\alpha = 0.095 \text{ fm}, \ V = 96 \times 32^3 \]

(historical data missing for detailed comparison)

\[m_\pi = 410 \text{ MeV}, \ m_\pi L = 6.3 \]

Overall behaviour of smallest eigenvalue

- \[\alpha \lambda = \min \{ \text{spec}(D_u^\dagger D_u)^{1/2} \} \]
 \[(\alpha \lambda = 0.001 \sim 2 \text{ MeV}) \]
- median \[\mu \propto Zm \]
- width \[\sigma \] decreases with \[m \]
- somewhat similar to \(N_f = 2 \) case \([12]\)
 (unimproved Wilson)
- (non-)Gaussian ?
- empirical: \([12]\) \[\sigma \sim a/\sqrt{V} \]

\[\]
Towards large scale simulations

How does the lowest eigenvalue distribution scale with quark mass?

\[a = 0.095 \text{ fm}, \ V = 96 \times 32^3 \]

(historical data missing for detailed comparison)

Overall behaviour of smallest eigenvalue

- \(a\lambda = \min \{ \text{spec}(D_u^\dagger D_u)^{1/2} \} \)
 \[(a\lambda = 0.001 \sim 2 \text{ MeV}) \]
- \(\text{median } \mu \propto Zm \)
- \(\text{width } \sigma \) decreases with \(m \)
- somewhat similar to \(N_f = 2 \) case\(^{[12]} \)
 (unimproved Wilson)
- (non-)Gaussian ?
- empirical:\(^{[12]} \) \(\sigma \simeq a/\sqrt{V} \)

\(m_\pi = 410 \text{ MeV}, \ m_\pi L = 6.3 \)
\(m_\pi = 294 \text{ MeV}, \ m_\pi L = 4.5 \)
Towards large scale simulations

How does the lowest eigenvalue distribution scale with quark mass?

$a = 0.095 \text{ fm}, V = 96 \times 32^3$

(historical data missing for detailed comparison)

Overall behaviour of smallest eigenvalue

- $a \lambda = \min \{ \text{spec}(D_u^\dagger D_u)^{1/2} \}$

 $(a \lambda = 0.001 \sim 2 \text{ MeV})$

- median $\mu \propto Zm$

- width σ decreases with m

- somewhat similar to $N_f = 2$ case[12]

 (unimproved Wilson)

- (non-)Gaussian ?

- empirical:[12] $\sigma \sim a/\sqrt{V}$

$m_\pi = 410 \text{ MeV}, m_\pi L = 6.3$

$m_\pi = 294 \text{ MeV}, m_\pi L = 4.5$

$m_\pi = 220 \text{ MeV}, m_\pi L = 3.4$
Stabilising very large volume simulations

- Stochastic Molecular Dynamics
- uniform norm in stopping criteria
- quadruple precision in global sums
- modified $O(a)$-improved Dirac op.

Stay tuned

- larger lattices are on the way

Thank you for your attention!

