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𝜙4 theory and the Ising model

Mean-field theory  : 𝐶 ∼ |𝑡|−𝛼 with 𝛼 = 0

Perturbative RG      : 𝐶 ∼ |𝑡|−𝛼 log |𝑡| 1/3 with 𝛼 = 0

(𝑡 = (𝑇 − 𝑇c)/𝑇c)

Kenna-Lang NPB393(1993)461, Kenna NPB691(2004)292

Ising model𝜙4 theory

Infinite-coupling limit

the same universality class

In the 4-dimensional case,

If the leading scaling behavior is the mean-field type and 
it is modified just by the multiplicative logarithmic factor, 

then the theory is trivial in the continuum limit.
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The latest Monte Carlo study

Lundow-Markstrom PRE80(2009)031104

Finite-size scaling analysis with linear system sizes 𝐿 ≤ 80

𝑪𝐦𝐚𝐱 𝑳 ∼ 𝐥𝐨𝐠𝑳 𝟏/𝟑

𝑪𝐦𝐚𝐱 𝑳 ∼ 𝑳−𝟎.𝟒𝟗𝟔

MC study of the 4-dimensional Ising model
⇨ a non-perturbative indirect test of the triviality 

Maximum value of the specific heat

𝑳 = 𝟖𝟎 is too small to catch 

the logarithmic divergence

OR

No logarithmic correction

(specific heat is bounded 

also in the infinite volume)
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Tensor Network scheme

Hamiltonian approach

・Quantum many-body system     

・Variational method (Ex. DMRG, MPS, PEPS, …)

Lagrangian approach

・Classical many-body system (path integral)

・Coarse-graining method (Ex. TRG, TNR, …)

Advantage of TN scheme

・No sign problem

・Direct treatment of Grassmann numbers

・Direct evaluation of thermodynamic limit

(simulation volume is increased just in one run)
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Current status of TN scheme in higher dimensions

3-dimensional system

・Ising model Xie et al. PRB86(2012)045139, Wang et al. CPL31(2014)070503

・Potts model Wang et al. CPL31(2014)070503

・Free Wilson fermion Sakai et al. PTEP2017(2017)063B07

・ℤ2 gauge theory (finite temperature) 

Kuramashi-Yoshimura arXiv:1808.08025[hep-lat]

(Lagrangian approach)
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4-dimensional system

・Ising model with parallel computation (this work) 

For technical design details of the parallel computing, 

see Yamashita-Sakurai (in preparation)



Higher-Order Tensor Renormalization Group
Xie et al. PRB86(2012)045139

𝑇(𝑛)
𝐷cut

𝐷cut
𝐷cut

𝑇(𝑛+1)

𝐷cut : bond dimension
(# of block-spin states)

memory ~ 𝐷cut
8

computational time ~ 𝐷cut
15

HOTRG in 4-dim. system

How to evaluate partition function
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Impure tensor method 

Coarse-graining of the tensor network 

including local impure tensor(s) at the center of lattice

⇨ Evaluation of internal energy and magnetization

without numerical differentiation

Ex. How to specify the nearest-neighbor 𝜎𝑖𝜎𝑗
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Numerical Results: Free energy

𝛿𝑓:=
ln 𝑍𝑁 𝐷cut − ln𝑍𝑁 𝐷cut = 13

ln 𝑍𝑁 𝐷cut = 13

𝐿 : linear system size 
(𝑁 = 𝐿4)

bond dimension (# of block-spin states)

𝑇 = 6.6425, ℎ = 0
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Numerical Results: # of the largest eigenvalues

iteration number (𝑁 = 2𝑛)

𝐷cut = 13, ℎ = 0
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Numerical Results: Transition point

Monte Carlo (𝐿 ≤ 80)
Lundow-Markstrom PRE80(2009)031104

6.68026(2)

HOTRG with 𝐷cut = 13 (𝐿 ≤ 1024) 6.650365(5) 
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Numerical Results: Internal energy

iteration number (𝑁 = 2𝑛)

𝐷cut = 13, ℎ = 0
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Numerical Results: Internal energy

temperature 11/14

𝐷cut = 13, ℎ = 0

Δ 𝐻 (𝐷cut = 13) = 0.0034(5)
with Δ𝑇 = 6.25 × 10−6
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Numerical Results: Magnetization
𝐷cut = 13, ℎ = 1.0 × 10−9

iteration number (𝑁 = 2𝑛) 12/14
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Numerical Results: Spontaneous magnetization

𝐷cut = 13

lim
ℎ→0

lim
𝑁→∞

𝜎

Δ 𝜎 (𝐷cut = 13) = 0.037(2)
with Δ𝑇 = 6.25 × 10−6
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Summary and outlook

・A finite jump emerges with mutual crossings of curves for different 

volume in the internal energy. A jump has also been observed in 

the spontaneous magnetization. 

𝑇c Note

Monte Carlo (𝐿 ≤ 80)
Lundow-Markstrom PRE80(2009)031104

6.68026(2)
logarithmic corrections

may not exist

HOTRG with 𝐷cut = 13 (𝐿 ≤ 1024) 6.650365(5)
seems like the weakly 

1st - order phase transition 
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Future work

★ Improvement of the impure tensor method

・patterns of coarse-graining for the network including impurity

・Best optimization of the Frobenius norm of impure tensor
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Non-vanishing boundary effect
Lundow-Markstrom NPB845(2011)120

Specific heat

Inverse temperature

Red : 𝐿 ∈ [4, 80] with the periodic boundary
Blue: 𝐿 ∈ [4, 40] with the open boundary  



Non-vanishing boundary effect
Lundow-Markstrom NPB845(2011)120

Transition point

(linear system size)-1

Red : 𝐿 ∈ [4, 80] with the periodic boundary
Blue: 𝐿 ∈ [4, 40] with the open boundary  



Internal energy of 2-dim. Ising model with impurity tensor method



HOTRG

𝑛 = 1 (internal energy)

Impurity Tensor Method

HOTRG



HOTRG

Impurity Tensor Method

HOTRG

𝑛 ≥ 2 (internal energy), 𝑛 ≥ 1 (magnetization)



Ordered phase ⇒ ℤ2 symmetry is broken spontaneously

Disordered phase ⇒ ℤ2 symmetry is preserved

The largest eigenvalue of 𝐴 is 2-fold degenerated, 𝑋 =2  

The largest eigenvalue of 𝐴 is unique, 𝑋 = 1

𝑋 ≔
(Tr 𝐴 )2

Tr 𝐴2
, where 𝐴𝑡𝑡′ ≔ σ𝑥𝑦𝑧 𝑇𝑥𝑥𝑦𝑦𝑧𝑧𝑡𝑡′

(𝑛)

How to specify 𝑇c(𝐷cut)

ℎ = 0


