Phase transition **Critical behavior** of 4-dimensional Ising model with higher-order tensor renormalization group Shinichiro Akiyama¹ in collaboration with Y. Kuramashi², T. Yamashita³, and Y. Yoshimura² ¹Graduate School of Pure and Applied Sciences, Univ. of Tsukuba, ²CCS, Univ. of Tsukuba, ³Faculty of Engineering, Information and Systems, Univ. of Tsukuba

Ref: arXiv:1906.06060

Lattice 2019 @Hilton Hotel Wuhan Riverside June 18, 2019

Outline of Talk

- 1. Introduction
- 2. Tensor Network Scheme
- 3. Numerical Results
- 4. Summary and Outlook

ϕ^4 theory and the Ising model

In the 4-dimensional case,

Mean-field theory : $C \sim |t|^{-\alpha}$ with $\alpha = 0$

Perturbative RG : $C \sim |t|^{-\alpha} (\log |t|)^{1/3}$ with $\alpha = 0$

 $(t = (T - T_{\rm c})/T_{\rm c})$

Kenna-Lang NPB393(1993)461, Kenna NPB691(2004)292

If the leading scaling behavior is the mean-field type and it is modified just by the multiplicative logarithmic factor, then the theory is trivial in the continuum limit.

The latest Monte Carlo study

MC study of the 4-dimensional Ising model ⇒ a non-perturbative indirect test of the triviality

Lundow-Markstrom PRE80(2009)031104

Finite-size scaling analysis with linear system sizes $L \leq 80$

Tensor Network scheme

Hamiltonian approach

- Quantum many-body system
- Variational method (Ex. DMRG, MPS, PEPS, ...)

Lagrangian approach

- Classical many-body system (path integral)
- Coarse-graining method (Ex. TRG, TNR, ...)

Advantage of TN scheme

- No sign problem
- Direct treatment of Grassmann numbers
- Direct evaluation of thermodynamic limit (simulation volume is increased just in one run)

Current status of TN scheme in higher dimensions (Lagrangian approach)

3-dimensional system

- Ising model Xie et al. PRB86(2012)045139, Wang et al. CPL31(2014)070503
- Potts model Wang et al. CPL31(2014)070503
- Free Wilson fermion Sakai et al. PTEP2017(2017)063B07
- \mathbb{Z}_2 gauge theory (finite temperature)

Kuramashi-Yoshimura arXiv:1808.08025[hep-lat]

4-dimensional system

Ising model with parallel computation (this work)
For technical design details of the parallel computing,

see Yamashita-Sakurai (in preparation)

Higher-Order Tensor Renormalization Group

Xie et al. PRB86(2012)045139

Impure tensor method

Coarse-graining of the tensor network including local impure tensor(s) at the center of lattice ⇒ Evaluation of internal energy and magnetization without numerical differentiation

Numerical Results: # of the largest eigenvalues

Numerical Results: Transition point

Numerical Results: Internal energy

Numerical Results: Internal energy -0.757 $D_{\rm cut} = 13, h = 0$ $\square \square n = 22$ $\leftrightarrow n = 23$ -0.758 $n = 24 \ (L = 64)$ $\rightarrow n = 28 \ (L = 128)$ $\neg \neg \neg n = 32 \ (L = 256)$ -0.759 Internal Energy ▶ n = 36 (*L* = 512) •--• n = 40 (L = 1024) -0.760 -0.761 $\Delta \langle H \rangle (D_{\rm cut} = 13) = 0.0034(5)$ -0.762 with $\Delta T = 6.25 \times 10^{-6}$ -0.763 6.650350 6.650325 6.650300 6.650375 6.650400 6.650425 temperature

Numerical Results: Spontaneous magnetization

Summary and outlook

	T _c	Note
Monte Carlo ($L \le 80$) Lundow-Markstrom PRE80(2009)031104	6.68026(2)	logarithmic corrections may not exist
HOTRG with $D_{\rm cut} = 13$ ($L \le 1024$)	6.650365(5)	seems like the weakly 1 st - order phase transition

 A finite jump emerges with mutual crossings of curves for different volume in the internal energy. A jump has also been observed in the spontaneous magnetization.

Future work

★ Improvement of the impure tensor method

- patterns of coarse-graining for the network including impurity
- Best optimization of the Frobenius norm of impure tensor

Backup

Non-vanishing boundary effect

Lundow-Markstrom NPB845(2011)120

Non-vanishing boundary effect

Lundow-Markstrom NPB845(2011)120

Internal energy of 2-dim. Ising model with impurity tensor method

Impurity Tensor Method

Impurity Tensor Method

How to specify $T_{\rm c}(D_{\rm cut})$

$$X \coloneqq \frac{(\operatorname{Tr}[A])^2}{\operatorname{Tr}[A^2]}$$
, where $A_{tt} \coloneqq \sum_{xyz} T_{xxyyzztt}^{(n)}$

h = 0

Ordered phase $\Rightarrow \mathbb{Z}_2$ symmetry is broken spontaneously The largest eigenvalue of A is 2-fold degenerated, X = 2Disordered phase $\Rightarrow \mathbb{Z}_2$ symmetry is preserved The largest eigenvalue of A is unique, X = 1