INVESTIGATION OF N=1 SUPERSYMMETRIC SU(2) YANG-MILLS THEORY

Philipp Scior with the DESY-Münster Collaboration

Lattice 2019 - Wuhan

based on arXiv: 1901.02416

UNIVERSITÄT BIELEFELD

Faculty of Physics

N = 1 SUSY YANG-MILLS THEORY Simplest SUSY gauge theory Part of every SUSY extension of the Standard Model

 $\mathscr{L} = -\frac{1}{\Lambda} F^a_{\mu\nu} F^{a\mu\nu} + \frac{i}{2} \bar{\lambda}^a \gamma^\mu (D_\mu \lambda)^a + \frac{1}{2} m \bar{\lambda}^a \lambda^a$

- Majorana fermions $\overline{\lambda} = \lambda^T \mathscr{C}$
- Adjoint representation $(D_{\mu}\lambda)^{a} = \partial_{\mu}\lambda^{a} + gf^{abc}A_{\mu}^{b}\lambda^{c}$
- Gluino mass term breaks SUSY softly

LATTICE ACTION

Symanzik gauge action

Adjoint link $V_{\mu}^{ab}(x) = \text{Tr}[U_{\mu}^{\dagger}(x)T^{a}U_{\mu}(x)T^{b}]$

With one level of Stout smearing

 $S = S_g + \frac{1}{2} \sum \left\{ \bar{\lambda}^a(x) \lambda^a(x) - \kappa \sum_{\mu=1}^{\pm 4} \bar{\lambda}^a(x+\hat{\mu}) (1+\gamma_\mu) V^{ab}_\mu(x) \lambda^b(x) \right\}$ $\mu \pm 1$

SUSY ON THE LATTICE

Problem:

Lattice discretization breaks SUSY explicitly!

However, if we are in the <u>chiral limit we recover SUSY for</u>

[Curci, Veneziano Nucl. Phys. B 292]

Check this explicitly by analyzing adjoint pion mass or SUSY Ward identities

 $\{Q, Q^{\dagger}\} \sim P_{\mu}$

$\mathcal{A} \rightarrow ()$

SPECTRUM OF BOUND STATES

SUSY Majorana fermions in adjoint representation

Equal masses in the same supermultiplet

Bosons

<u>Gluons</u>

<u>Gluinos</u>

energy Low

SPECTRUM OF BOUND STATES Color neutral bound states of gluons and gluinos should form supermultiplets Predictions from effective field theories: $0^+ \text{ a-f}_0 \text{ meson} \sim \overline{\lambda} \lambda$ $0^- a - \eta' \text{ meson} \sim \lambda \gamma_5 \lambda$ spin 1/2 gluino-glue ~ $\sigma_{\mu\nu} \text{Tr}(F_{\mu\nu}\lambda)$ [Veneziano, Yankielowitz PLB 113]

SPECTRUM OF BOUND STATES

Additional Multiplet:

0⁺ glueball

0⁻ glueball

spin 1/2 gluino-glue ~ $\sigma_{\mu\nu} \text{Tr}(F_{\mu\nu}\lambda)$

[Farrar, Gabadatze, Schwetz PRD 60]

Possible mixing between multiplets mass hierarchy unclear

)

SPECTRUM OF BOUND STATES

[Farrar, Gabadatze, Schwetz PRD 60]

VARIATIONAL METHOD

Use not a single operator to describe a particle but a set of operators O_i

Solve generalized Eigenvalue problem to get masses

 $C(t)\overrightarrow{v}^{(n)} = \lambda^{(n)}(t,t_0)C(t_0)\overrightarrow{v}^{(n)}$

with

 $\lim \lambda^{(n)}(t, t_0) \propto e^{-m^{(n)}(t-t_0)} \left(1 + \mathcal{O}(e^{-\Delta m^{(n)}(t-t_0)})\right)$ $t \rightarrow \infty$

- $C_{ij} = \langle O_i(t) O_j^{\dagger}(0) \rangle$

- We reanalzyed old configurations
- With an improved operator basis
 - using "optimized" smearing techniques
 - and taking operator mixing into account

3 different lattice spacings with 3 - 6 different gluino masses

OPERATOR BASIS

- Use combination of APE and Jacobi smearing
- Include suitable operators
- Different for each particle
- Beware of oversmearing

Tedious task, but essential for extracting excited multiplet

OPERATOR BASIS

- Importance of mixed basis
- There is an optimal number of operators

CONTINUUM EXTRAPOLATION

- First extrapolate to chiral limit
- Finally extrapolate towards continuum
- Scale setting via W_0
- Clear formation of two supermultiplets

MIXING

By solving the GEVP for the mixed correlation matrix we can determine the mixing of glueballs and mesons:

$$|\psi\rangle = |\phi^g\rangle + |\phi^m\rangle$$
 with

0⁺ channel:

overlaps

 $\langle \psi | \phi^x \rangle$

0⁻ channel:

no apparent mixing!

BARYONS IN SYM

We began to study baryons

Only preliminary results, not yet conclusive

Contributing diagrams:

 $O(x) = t^{abc} \lambda^a (\lambda^{bT} \Gamma \lambda^c)$

- Improved results for SU(2) Super Yang-Mills theory
 Decomplexing on entire inclusion in the vertication of the second second
- By employing an optimized basis in the variational method
- Including operator mixing
- Clear formation of groundstate and excited multiplet
- First determination of mixing content
- We use our improved method also in SU(3) Super YM project \rightarrow See talk by Georg Bergner

Lattice ensembles

$\beta = 1.9$ $32^3 \times 64$	$\kappa = 0.1433$	<i>κ</i> = 0.14387	$\kappa = 0.14415$	$\kappa = 0.14435$		
$\beta = 1.75$ 24 ³ × 48 32 ³ × 64	$\kappa = 0.1490$	<i>κ</i> = 0.1492	$\kappa = 0.14925$	$\kappa = 0.1493$	$\kappa = 0.1494$	$\kappa = 0.149$
$\beta = 1.6$ 24 ³ × 48	$\kappa = 0.1550$	$\kappa = 0.1570$	$\kappa = 0.1575$			

