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bounds on the singlet pNGBs in Section IV. We o↵er our conclusions in Section V.

II. UNDERLYING MODELS FOR A COMPOSITE HIGGS WITH TOP PARTIAL

COMPOSITENESS

Coset HC  � �q�/q Baryon Name Lattice

SU(5)

SO(5)
⇥ SU(6)

SO(6)

SO(7)
5⇥ F 6⇥ Sp

5/6
 ��

M1

SO(9) 5/12 M2

SO(7)
5⇥ Sp 6⇥ F

5/6
  �

M3

SO(9) 5/3 M4

SU(5)

SO(5)
⇥ SU(6)

Sp(6)
Sp(4) 5⇥A2 6⇥ F 5/3  �� M5

p

SU(5)

SO(5)
⇥ SU(3)2

SU(3)

SU(4) 5⇥A2 3⇥ (F,F) 5/3
 ��

M6
p

SO(10) 5⇥ F 3⇥ (Sp,Sp) 5/12 M7

SU(4)

Sp(4)
⇥ SU(6)

SO(6)

Sp(4) 4⇥ F 6⇥A2 1/3
  �

M8
p

SO(11) 4⇥ Sp 6⇥ F 8/3 M9

SU(4)2

SU(4)
⇥ SU(6)

SO(6)

SO(10) 4⇥ (Sp,Sp) 6⇥ F 8/3
  �

M10

SU(4) 4⇥ (F,F) 6⇥A2 2/3 M11
p

SU(4)2

SU(4)
⇥ SU(3)2

SU(3)
SU(5) 4⇥ (F,F) 3⇥ (A2,A2) 4/9   � M12

TABLE I. Model details. The first column shows the EW and QCD colour cosets, respectively, followed

by the representations under the confining hypercolour (HC) gauge group of the EW sector fermions

 and the QCD coloured ones �. The �q�/q column indicates the ratio of charges of the fermions

under the non-anomalous U(1) combination, while “Baryon” indicate the typical top partner structure.

The column “Name” contains the model nomenclature from Ref. [27], while the last column marks

the models that are currently being considered on the lattice. Note that Sp indicates the spinorial

representation of SO(N), while F and A2 stand for the fundamental and two-index anti-symmetric

representations.

In this work we are interested in the underlying models for composite Higgs with top partial

compositeness defined in Ref. [24]. These models characterise the underlying dynamics below

the condensation scale ⇤ ⇡ 4⇡f , f being the decay constant of the pNGBs. As such, the need to

be outside of the conformal window: this leaves only 12 models [36], listed in Table I. They are

defined in terms of a confining gauge interaction, that we call hypercolour (HC), and two species

of fermions in two di↵erent irreducible representations of the HC. The two species of fermions

play di↵erent roles: the EW charged  generate the Higgs and the EW symmetry breaking
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Global symmetry �c) in the antisymmetric representation of the gauge Sp(4), transforming as singlets of the
global SU(4), and on the fundamental (and anti-fundamental) representation of the SU(3)c
gauge symmetry of QCD.

The � and �c fermions carry QCD colour charge, which allows to construct coloured
composite states in the antisymmetric, six-dimensional representation of the global SU(4)

group, by coupling them to a pair of fundamental fermions q. For example, the operators
 ̂ and  ̂c aforementioned can be obtained as

 ̂ab↵
⌘

⇣
qa�↵qb

⌘
,  ̂c ab

↵ =
⇣
qa�c

↵qb
⌘

, (2.40)

where the Sp(4) gauge indices are understood, while we show explicitly the (antisym-
metrised) global SU(4) indices a and b, and the SU(3)c colour index ↵.

One of our long-term goals is to study the PC mechanism with lattice simulations,
which requires generalising the lattice study we will report upon in the following sections to
the case in which the field content contains at least two species of fermions transforming in
different representations of the fundamental gauge group. The example we outlined here,
though incomplete, immediately highlights how, from the phenomenological perspective,
the determination of the masses of the top partners (the scale M⇤ and couplings such as
�, as a function of the elementary-fermion mass m) in the PC mechanism are of direct
interest, as they represent a way to test the theory. At the same time, they are accessible
on the lattice, even without introducing (model-dependent) couplings to the SM fields.

The other additional, essential, input from non-perturbative dynamics of the micro-
scopic theory is the anomalous dimension of the top-partner operators, such as  ̂ and  ̂c

in the example. For the PC mechanism to be valid, in principle one needs the operator
dimensions to be small, for example d  5/2, which implies that the operator  ̂T

1 C̃tc is
relevant in the IR, and that the anomalous dimensions of the candidate operators have to
be non-perturbatively large. In practice, since ⇤/M⇤ is not infinity, this requirement may
be relaxed, at the price of admitting some degree of fine-tuning.

Finally, the (model-dependent) extension of the field content, required by the PC mech-
anism, also implies the enlargement of the global symmetry, and additional light PNGB’s,
some of which are neutral, some of which carry SU(3)c colour, and many of which may be
lighter than the typical scale of the other composite particles. Lattice calculations of the
masses of such particles would offer the opportunity to connect with the phenomenology
derived from direct particle searches at the LHC.

3 Numerical lattice treatment

In this Section, we present the discretised Euclidean action and Monte Carlo techniques
used in the numerical studies. We adapt the state-of-the-art lattice techniques established
for QCD to the two-flavour Sp(4) theory. Pioneering lattice studies of Sp(4) gauge theory
without matter can be found in [1]. Numerical calculations are carried out by modifying
the HiRep code [53].
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Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.

symmetry [17–19]. One extends the symmetry from SU(4) to SU(4)A ⇥ SU(4)B, with
SU(4)A weakly gauged, with coupling g⇢. Then one enlarges the field content to include
two non-linear sigma-model fields S and ⌃. The non-linear sigma-model S transforms as
the bifundamental of SU(4)B ⇥SU(4)A, while the field ⌃ transforms on the antisymmetric
of SU(4)A:

S ! UB S U †
A
, ⌃ ! UA⌃U

T

A . (2.14)

In a composite Higgs model, the SM gauge group SU(2)L⇥U(1)Y is a subgroup of SU(4)B.
The gauging of the SU(4)A symmetry means that (for global SU(4)B) one has to

introduce the covariant derivatives

DµS = @µS � i g⇢SAµ , (2.15)
Dµ⌃ = @µ⌃ + i g⇢

�
Aµ⌃ + ⌃AT

µ

�
, (2.16)

and then L0 is replaced by all possible 2-derivative invariant operators made by S, ⌃, DS,
D⌃, together with the kinetic term for the gauge bosons. Both S and ⌃ are non-vanishing
in the vacuum, inducing the symmetry breaking pattern SU(4)A ⇥ SU(4)B ! Sp(4), and
all vectors are massive. h⌃i splits the mass of the 5 a1 and the 10 ⇢ mesons.

In unitary gauge, besides the heavy vectors only the physical pions are retained. They
are linear combinations of the fluctuations of S and ⌃. The mass term for the pions is

Lm = �
v3

4
Tr

n
M S ⌃ST

o
+ h.c. . (2.17)

The quark masses also contribute to the masses of the spin-1 states in a more complicated
way, that will be discussed elsewhere [30].

In the absence of the antisymmetric condensate (for h⌃i = 0), ⇢ and a1 mesons would
be exactly degenerate. Their mass splitting is hence a measure of the amount of breaking
SU(4) ! Sp(4). In the main body of the paper we use the mass splitting between ⇢

(vector) and a1 (axial-vector) as a way to test whether the global symmetry is restored at
high temperatures. The generalization to the case in which ⌃ is replaced by H̃ does not
require any new ingredients. In particular the restoration of the axial U(1)A and of the
chiral SU(4) can, at least in principle, be treated independently. We summarize in Table 2
the properties of the states discussed in the body of the paper. One of the purposes of this
paper is to make the first steps towards a quantitative assessment of the relation between
the two phenomena at high temperature, in the specific theory of interest here.
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Sp(4) SO(6)SU(3)c x U(1)Y

SM Strong

4 of 5 PNGBs: Higgs doublets

- N=2 to make it minimal & near conformal

e.g.

2 Dirac flavors 
in fund. rep.

3 Dirac flavors 
in anti-sym. rep.

Why Sp(4)? - SU(4)/Sp(4) CH

- UV realization of SO(6)/SO(5) CH model from Sp(2N) gauge theory

where the dimesionful LECs are normalized by w0 and part of them absorb the coefficient
2B̂ = 2Bw0 of the LO relation for m̂

2

PS

f̂ = fw0, F̂ = Fw0, ŷ3 =
y3

2B̂w0

, ŷ4 =
y4

2B̂w0

, v̂1 =
v1w0

2B̂
, v̂2 =

v2w0

2B̂
. (5.6)

m̂
2

V =
g
2

V
(bf̂2 + F̂

2)

4(1 + )
+

2v̂1( + 1) � ŷ3(bf̂2 + F̂
2)

4( + 1)2
g
2

Vm̂
2

PS + O(m̂4

⇡), (5.7)

m
2

V =
1
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g
2

V (bf2 + F
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m
2
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V (bf2 + F
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+
g
2

V

1 �  � my4

�
f
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(5.10)

f
2

V =
1
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�
bf

2 + F
2 + 2mv1

�
(5.11)

f
2

AV =

�
bf
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2 ((b + 4)f2 + F 2 � 2mv1 + 4mv2)
(5.12)

f
2

PS = F
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� f
2

V � f
2

AV (5.13)

m
2

PSf
2

PS = m(v3 + mv
2

5) (5.14)

m̂
2

PS ⌧ 0.67 (5.15)

SU(2) ⇠ Sp(2) (5.16)

fPS ⇠

p
Nc (5.17)

hSi 6= 0 (5.18)

⇢ (5.19)

SU(4)/Sp(4) (5.20)

⇠ SO(6)/SO(5) (5.21)

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
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Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.

symmetry [17–19]. One extends the symmetry from SU(4) to SU(4)A ⇥ SU(4)B, with
SU(4)A weakly gauged, with coupling g⇢. Then one enlarges the field content to include
two non-linear sigma-model fields S and ⌃. The non-linear sigma-model S transforms as
the bifundamental of SU(4)B ⇥SU(4)A, while the field ⌃ transforms on the antisymmetric
of SU(4)A:

S ! UB S U †
A
, ⌃ ! UA⌃U

T

A . (2.14)

In a composite Higgs model, the SM gauge group SU(2)L⇥U(1)Y is a subgroup of SU(4)B.
The gauging of the SU(4)A symmetry means that (for global SU(4)B) one has to

introduce the covariant derivatives

DµS = @µS � i g⇢SAµ , (2.15)
Dµ⌃ = @µ⌃ + i g⇢

�
Aµ⌃ + ⌃AT

µ

�
, (2.16)

and then L0 is replaced by all possible 2-derivative invariant operators made by S, ⌃, DS,
D⌃, together with the kinetic term for the gauge bosons. Both S and ⌃ are non-vanishing
in the vacuum, inducing the symmetry breaking pattern SU(4)A ⇥ SU(4)B ! Sp(4), and
all vectors are massive. h⌃i splits the mass of the 5 a1 and the 10 ⇢ mesons.

In unitary gauge, besides the heavy vectors only the physical pions are retained. They
are linear combinations of the fluctuations of S and ⌃. The mass term for the pions is

Lm = �
v3

4
Tr

n
M S ⌃ST

o
+ h.c. . (2.17)

The quark masses also contribute to the masses of the spin-1 states in a more complicated
way, that will be discussed elsewhere [30].

In the absence of the antisymmetric condensate (for h⌃i = 0), ⇢ and a1 mesons would
be exactly degenerate. Their mass splitting is hence a measure of the amount of breaking
SU(4) ! Sp(4). In the main body of the paper we use the mass splitting between ⇢

(vector) and a1 (axial-vector) as a way to test whether the global symmetry is restored at
high temperatures. The generalization to the case in which ⌃ is replaced by H̃ does not
require any new ingredients. In particular the restoration of the axial U(1)A and of the
chiral SU(4) can, at least in principle, be treated independently. We summarize in Table 2
the properties of the states discussed in the body of the paper. One of the purposes of this
paper is to make the first steps towards a quantitative assessment of the relation between
the two phenomena at high temperature, in the specific theory of interest here.
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- Casimir scaling: Universality in 
pure SU(N), SO(N), Sp(2N) 
Yang-Mills 
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will be in a position to probe further by performing numerical studies of Sp(2N) guage
theories at larger N .

The rest of the glueball spectrum also follows a patter that is broadly similar to that of
SU(N). Another interesting quantity in the glueball sector is the ratio m2++/m0++ . Using
universality arguments, it has been argued in [23] that for infrared confining theories where
there is no influence (in the RG group sense) from any IR conformal point, one should find
m2++/m0++ =

p
2. Our numerical results give m2++/m0++ = 1.425(32), a value that is

fully compatible with the conjecture of [23].
Finally, another interesting observation has been put forward in [24], where it is sug-

gested that
m2

0++

�
= ⌘

C2(A)

C2(F )
, (5.31)

where C2(A) and C2(F ) are the quadratic Casimirs of the adjoint and of the adjoint rep-
resentation, respectively, and ⌘ is a universal constant, in the sense that it depends on the
dimensionality of the spacetime, but not on the gauge group. Noting that for Sp(2N)

C2(A)

C2(F )
=

4 (N + 1)

2N + 1
, (5.32)

we find

⌘ = 5.27(15) , (5.33)

which is compatible with the value ⌘ = 5.41(12) extracted from SU(N) groups in 3+1
dimensions in [24].

To conclude this section, in addition to being relevant for models of electroweak symme-
try breaking based on a Pseudo-Nambu-Goldstone interpretation of the Higgs field, whose
investigation is the central leitmotif of this paper, studies of Sp(2N) pure gauge theories
provide new relevant information on universal aspects of Yang-Mills dynamics. We shall
develop this latter line of research in future numerical investigations.

6 Of quenched mesons: Masses and decay constants

In this Section, we perform the calculation of the masses and decay constants of the lightest
mesons in quenched approximation. The main purpose of this Section is to illustrate the
process that we envision we will carry out once simulations with dynamical quarks are
available. As such, while we will attempt a comparison with the EFT, and we will discuss
its implications, we do not expect the results to have much physics relevance.

We also highlight that the EFT we wrote, within the limitations we discuss, describes
the continuum limit of the dynamical simulations, not the quenched one. In principle, one
could make more sense of the comparison by adopting the approach of quenched chiral
perturbation theory [62, 63] or of partially-quenched chiral perturbation theory [64–66],
but for present purposes our strategy will suffice.
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Lattice details

- Gauge configurations are generated by using hybrid Monte Carlo algorithm 
implemented in the modified HiRep code.

- Periodic B.C. for spacial directions & anti-periodic B.C. for temporal direction

- Standard (unimproved) Wilson gauge & fermion actions

Del Debbio, Patella, Pica (2010)

fits of the correlation functions are presented in Appendix B. We present our strategy to
perform the continuum limit extrapolation by employing a mass-dependent prescription.
We then deploy, in Section 5.2, our EFT tools, in order to perform the extrapolation to-
wards the massless limit and determine the low-energy constants (LECs) whose histograms
are presented in Appendix C. We also critically discuss the resulting numerical fits: im-
plications, applications and limitations. Section 6 is devoted to comparing our results to
the analogous observables in other theories, by borrowing published data available in the
literature, as well as to the results obtained within the quenched approximation. As we
shall see, besides providing an important sanity check, the latter also allows us to assess
the impact of quenching on 2-point correlators, an information that might be of value, as
it provides guidance towards future studies of Sp(2N) theories with N > 2. The large vol-
ume quenched calculations are discussed in Appendix D. We conclude by outlining future
avenues for exploration in Section 7.

2 Lattice model

A distinghused feature of Sp(2N) gauge theories with Nf massless Dirac fermions in the
fundamental representation is the enhanced global symmetry of SU(2Nf ) thanks to the
pseudoreality of the representation. The model of our interests contains two fundamental
Dirac fermions and gauge bosons of Sp(4) theory, where its global symmetry is expected
to be spontaneously and explicitly broken, with the pattern of SU(4) ! Sp(4), in the
presence of a non-zero fermion bilinear condensate and a (degenerate) finite fermion mass,
respectively. The resulting low-energy dynamics are governed by five PNGBs corresponding
to the SU(4)/Sp(4) coset. By adopting Wilson fermions, the global symmetry is also broken
explicitly by the Wilson term of the lattice action in the same way of a fermion bilinear
condensate. We should therefore note that our numerical results will reflect the fact that
the symmetry breaking of the corresponding continuum theory is driven by the condensate.

2.1 Lattice action

Our lattice action descretized on the four-dimensional Euclidean space contains gauge-field
and fermionic matter-field terms as usual

S = Sg + Sf . (2.1)

We use the standard Wilson plaquette action for the gauge field, but the gauge links Uµ

are now Sp(4) group elements in the fundamental representation:

Sg = �

X

x

X

µ<⌫

✓
1 �

1

4
Re TrPµ⌫

◆
, (2.2)

with the plaquette defined by

Pµ⌫(x) = Uµ(x)U⌫(x + µ̂)U †

µ(x + ⌫̂)U †

⌫ (x), (2.3)
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where the lattice coupling is given by � = 8/g
2. The pineering lattice studies of Sp(2N)

Yang-Mills showed that a bulk phase transition is absent in the Sp(4) theory, implying that
one can in principle take the continuum limit by choosing any values of � [75].

We define the fermion sector by using the (unimproved) Wilson action for two mass-
degenerate Dirac fermions in the fundamental representation

Sf = a
3
X

x

 ̄(x) (4 + am0) (x)

�
1

2
a
3
X

x,µ

 ̄(x)
⇣
(1 � �µ)Uµ(x) (x + µ̂) + (1 + �µ)U †

µ(x � µ̂) (x � µ̂)
⌘

, (2.4)

where a is the lattice spacing and am0 is the bare mass in lattice units. In the case of
dynamical simulations with two Wilson-Dirac fermions, in contrast to the pure Sp(4) case,
we found a first-order bulk phase transition from our preliminary study on the mass scan of
average plaquette values hP i = 1

4

P
x

P
µ<⌫

trPµ⌫(x) [55]. By investigating the hysterises
in the trajectories of hP i started from cold (unit) and hot (random) configurations at
small lattice volume and the volume dependence of the plaquette susceptibilities, we have
determined the lower bound of the weak coupling regime, � & 6.8, where the continuum
extrapolation can be carried out safely. In this weak coupling regime the Wilson fermion
mass can be lowered smoothly before we touch the possible unphysical Aoki phase near the
massless limit [76]. For all ensembles considered in this work no sign of the Aoki phase has
been seen as we are presumably far from the massless limit.

2.2 Numerical setup

Using the lattice action in Eq. 2.1 we simulate the Sp(4) theory with two Dirac fermions in
the fundamental representation, where gauge configurations are generated by the standard
hybrid Monte Carlo (HMC) algorithm. In Ref. [55] we extensively discussed the numerical
techniques, such as the resymplecticization, necessary to simulate our mode by modifying
the Hirep code [77]. Since then, we have further improved the code in which we could
simulate an arbitrary number of N � 2 and reduce the size of a gauge configuration by
factor of two, where the details are presented in Appendix A.1.

The ensembles for dynamical simulations are summarized in Table 1. In the table we
present the values of lattice coupling � and bare fermion mass am0: the former are chosen
to be in the weak coupling regime ranged over 6.9 � 7.5, while the latter are chosen to be
light enough for which the low-energy effective theories are applicable. We consider the four
dimensional Euclidean lattice Nt⇥N

3
s with periodic boundary conditions in all directions for

gauge field, where Nt and Ns are the extents of temporal and spatial lattices, respectively.
The physical volume V = T ⇥ L

3 is restored by taking T = Nta and L = Nsa. For the
Dirac field, on the other hand, we implement periodic and anti-periodic boundary conditions
for spatial and temporal directions, respectively. All lattice volumes satisfy the condition
mPSL & 7.5, where amPS denotes the mass of pseudoscalar meson in lattice units extracted
from the two-point correlation functions as will be discussed in Section 4. This guarantees
that the volumes are large enough that the finite-size effects are under control, where a
related discussion is given in the follwing section. In the table we also present the results

– 5 –

where the lattice coupling is given by � = 8/g
2. The pineering lattice studies of Sp(2N)

Yang-Mills showed that a bulk phase transition is absent in the Sp(4) theory, implying that
one can in principle take the continuum limit by choosing any values of � [75].

We define the fermion sector by using the (unimproved) Wilson action for two mass-
degenerate Dirac fermions in the fundamental representation

Sf = a
3
X

x

 ̄(x) (4 + am0) (x)

�
1

2
a
3
X

x,µ

 ̄(x)
⇣
(1 � �µ)Uµ(x) (x + µ̂) + (1 + �µ)U †

µ(x � µ̂) (x � µ̂)
⌘

, (2.4)

where a is the lattice spacing and am0 is the bare mass in lattice units. In the case of
dynamical simulations with two Wilson-Dirac fermions, in contrast to the pure Sp(4) case,
we found a first-order bulk phase transition from our preliminary study on the mass scan of
average plaquette values hP i = 1

4

P
x

P
µ<⌫

trPµ⌫(x) [55]. By investigating the hysterises
in the trajectories of hP i started from cold (unit) and hot (random) configurations at
small lattice volume and the volume dependence of the plaquette susceptibilities, we have
determined the lower bound of the weak coupling regime, � & 6.8, where the continuum
extrapolation can be carried out safely. In this weak coupling regime the Wilson fermion
mass can be lowered smoothly before we touch the possible unphysical Aoki phase near the
massless limit [76]. For all ensembles considered in this work no sign of the Aoki phase has
been seen as we are presumably far from the massless limit.

2.2 Numerical setup

Using the lattice action in Eq. 2.1 we simulate the Sp(4) theory with two Dirac fermions in
the fundamental representation, where gauge configurations are generated by the standard
hybrid Monte Carlo (HMC) algorithm. In Ref. [55] we extensively discussed the numerical
techniques, such as the resymplecticization, necessary to simulate our mode by modifying
the Hirep code [77]. Since then, we have further improved the code in which we could
simulate an arbitrary number of N � 2 and reduce the size of a gauge configuration by
factor of two, where the details are presented in Appendix A.1.

The ensembles for dynamical simulations are summarized in Table 1. In the table we
present the values of lattice coupling � and bare fermion mass am0: the former are chosen
to be in the weak coupling regime ranged over 6.9 � 7.5, while the latter are chosen to be
light enough for which the low-energy effective theories are applicable. We consider the four
dimensional Euclidean lattice Nt⇥N

3
s with periodic boundary conditions in all directions for

gauge field, where Nt and Ns are the extents of temporal and spatial lattices, respectively.
The physical volume V = T ⇥ L

3 is restored by taking T = Nta and L = Nsa. For the
Dirac field, on the other hand, we implement periodic and anti-periodic boundary conditions
for spatial and temporal directions, respectively. All lattice volumes satisfy the condition
mPSL & 7.5, where amPS denotes the mass of pseudoscalar meson in lattice units extracted
from the two-point correlation functions as will be discussed in Section 4. This guarantees
that the volumes are large enough that the finite-size effects are under control, where a
related discussion is given in the follwing section. In the table we also present the results

– 5 –

where the lattice coupling is given by � = 8/g
2. The pineering lattice studies of Sp(2N)

Yang-Mills showed that a bulk phase transition is absent in the Sp(4) theory, implying that
one can in principle take the continuum limit by choosing any values of � [75].

We define the fermion sector by using the (unimproved) Wilson action for two mass-
degenerate Dirac fermions in the fundamental representation

Sf = a
3
X

x

 ̄(x) (4 + am0) (x)

�
1

2
a
3
X

x,µ

 ̄(x)
⇣
(1 � �µ)Uµ(x) (x + µ̂) + (1 + �µ)U †

µ(x � µ̂) (x � µ̂)
⌘

, (2.4)

where a is the lattice spacing and am0 is the bare mass in lattice units. In the case of
dynamical simulations with two Wilson-Dirac fermions, in contrast to the pure Sp(4) case,
we found a first-order bulk phase transition from our preliminary study on the mass scan of
average plaquette values hP i = 1

4

P
x

P
µ<⌫

trPµ⌫(x) [55]. By investigating the hysterises
in the trajectories of hP i started from cold (unit) and hot (random) configurations at
small lattice volume and the volume dependence of the plaquette susceptibilities, we have
determined the lower bound of the weak coupling regime, � & 6.8, where the continuum
extrapolation can be carried out safely. In this weak coupling regime the Wilson fermion
mass can be lowered smoothly before we touch the possible unphysical Aoki phase near the
massless limit [76]. For all ensembles considered in this work no sign of the Aoki phase has
been seen as we are presumably far from the massless limit.

2.2 Numerical setup

Using the lattice action in Eq. 2.1 we simulate the Sp(4) theory with two Dirac fermions in
the fundamental representation, where gauge configurations are generated by the standard
hybrid Monte Carlo (HMC) algorithm. In Ref. [55] we extensively discussed the numerical
techniques, such as the resymplecticization, necessary to simulate our mode by modifying
the Hirep code [77]. Since then, we have further improved the code in which we could
simulate an arbitrary number of N � 2 and reduce the size of a gauge configuration by
factor of two, where the details are presented in Appendix A.1.

The ensembles for dynamical simulations are summarized in Table 1. In the table we
present the values of lattice coupling � and bare fermion mass am0: the former are chosen
to be in the weak coupling regime ranged over 6.9 � 7.5, while the latter are chosen to be
light enough for which the low-energy effective theories are applicable. We consider the four
dimensional Euclidean lattice Nt⇥N

3
s with periodic boundary conditions in all directions for

gauge field, where Nt and Ns are the extents of temporal and spatial lattices, respectively.
The physical volume V = T ⇥ L

3 is restored by taking T = Nta and L = Nsa. For the
Dirac field, on the other hand, we implement periodic and anti-periodic boundary conditions
for spatial and temporal directions, respectively. All lattice volumes satisfy the condition
mPSL & 7.5, where amPS denotes the mass of pseudoscalar meson in lattice units extracted
from the two-point correlation functions as will be discussed in Section 4. This guarantees
that the volumes are large enough that the finite-size effects are under control, where a
related discussion is given in the follwing section. In the table we also present the results

– 5 –

Bennett et al (2018)

where                      and the plaquette is

3.1 Lattice action

For the numerical study of Sp(2N) gauge theory on the lattice, we consider the standard
plaquette action

Sg[U ] = �
X

x

X

µ<⌫

✓
1 �

1

2N
Re Tr Pµ⌫(x)

◆
, (3.1)

where � = 4N/g2 is the lattice bare gauge coupling, and N = 2 in the Sp(4) case of this
paper. The plaquette Pµ⌫ is given by

Pµ⌫(x) = Uµ(x)U⌫(x + µ̂)U †

µ(x + ⌫̂)U †

⌫ (x) , (3.2)

where the link variables Uµ(x) are Sp(4) group elements in the fundamental representation,
while µ̂ and ⌫̂ are unit vectors along the µ and ⌫ directions.

In the dynamical simulations with two Dirac fermions in the fundamental representa-
tion, we use the (unimproved) Wilson action

Sf [U,  ̄, ] = a4
X

x

 ̄(x)Dm (x) , (3.3)

where the massive Wilson-Dirac operator is given by

Dm (x) ⌘ (D + m0) (x)

= (4/a + m0) (x) �
1

2a

X

µ

n
(1 � �µ)Uµ(x) (x + µ̂)+ (3.4)

+(1 + �µ)Uµ(x � µ̂) (x � µ̂)
o

,

where a is the lattice spacing and m0 is the bare fermion mass.

3.2 Heat Bath

As a powerful way to perform calculations in the pure Sp(4) gauge theory, we implemented
a heat bath (HB) algorithm with micro-canonical over-relaxation updates, to improve the
decorrelation of successive configurations. As in the case of SU(N) [54], the algorithm acts
in turn on SU(2) subgroups, the choice of which can be shown to strongly relate to the
ergodicity of the update pattern.

A sufficient condition to ensure ergodicity is to update the minimal set of SU(2) sub-
groups to cover the whole Sp(2N) group. This condition can be suitably translated to the
algebra of the group and generalised to any Sp(2N). In the Sp(4) case, of relevance to this
paper, we choose to update a redundant set of subgroups, in order to improve the decor-
relation of configurations. We provide below a possible partition of the generators used to
cover all of the Sp(4) gauge group, written with the notation of [32].

• SU(2)L subgroup, with generators T i

L
in Eq. (B.6) of [32].

• SU(2)R subgroup, with generators T i

R
in Eq. (B.7) of [32].
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tion, we use the (unimproved) Wilson action

Sf [U,  ̄, ] = a4
X

x

 ̄(x)Dm (x) , (3.3)

where the massive Wilson-Dirac operator is given by

Dm (x) ⌘ (D + m0) (x)

= (4/a + m0) (x) �
1

2a

X

µ

n
(1 � �µ)Uµ(x) (x + µ̂)+ (3.4)

+(1 + �µ)Uµ(x � µ̂) (x � µ̂)
o

,

where a is the lattice spacing and m0 is the bare fermion mass.

3.2 Heat Bath

As a powerful way to perform calculations in the pure Sp(4) gauge theory, we implemented
a heat bath (HB) algorithm with micro-canonical over-relaxation updates, to improve the
decorrelation of successive configurations. As in the case of SU(N) [54], the algorithm acts
in turn on SU(2) subgroups, the choice of which can be shown to strongly relate to the
ergodicity of the update pattern.

A sufficient condition to ensure ergodicity is to update the minimal set of SU(2) sub-
groups to cover the whole Sp(2N) group. This condition can be suitably translated to the
algebra of the group and generalised to any Sp(2N). In the Sp(4) case, of relevance to this
paper, we choose to update a redundant set of subgroups, in order to improve the decor-
relation of configurations. We provide below a possible partition of the generators used to
cover all of the Sp(4) gauge group, written with the notation of [32].

• SU(2)L subgroup, with generators T i

L
in Eq. (B.6) of [32].

• SU(2)R subgroup, with generators T i

R
in Eq. (B.7) of [32].
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Ensembles
Table 1. List of ensembles. Two lattice parameters � and m0, used in the simulations of Nt ⇥ N

3
s

lattice, are for the bare gauge coupling and the bare fermion mass, respectively. The number of
configurations used for the estimation of the average plaquette hP i and the gradient flow scale
w0/a is denoted by Nconfigs, while the separation of trajectories between adjacent configurations is
denoted by �traj.

Ensemble � am0 Nt ⇥ N
3
s Nconfigs �traj hP i w0/a

DB1M1 6.9 -0.85 32 ⇥ 163 100 24 0.54675(5) 0.8149(7)
DB1M2 6.9 -0.87 32 ⇥ 163 100 24 0.55052(6) 0.8654(9)
DB1M3 6.9 -0.89 32 ⇥ 163 100 20 0.55478(6) 0.9342(11)
DB1M4 6.9 -0.9 32 ⇥ 163 100 20 0.55696(6) 0.9784(18)
DB1M5 6.9 -0.91 32 ⇥ 163 100 20 0.55951(5) 1.0413(19)
DB1M6 6.9 -0.92 32 ⇥ 243 80 28 0.56204(3) 1.1196(14)
DB1M7 6.9 -0.924 32 ⇥ 243 62 12 0.56328(4) 1.1618(13)
DB2M1 7.05 -0.835 36 ⇥ 203 100 20 0.575267(29) 1.2939(19)
DB2M2 7.05 -0.85 36 ⇥ 243 100 24 0.577371(23) 1.4148(21)
DB2M3 7.05 -0.857 36 ⇥ 323 102 20 0.578324(13) 1.4836(15)
DB3M1 7.2 -0.7 36 ⇥ 163 100 20 0.58333(4) 1.2965(25)
DB3M2 7.2 -0.73 36 ⇥ 163 100 20 0.58548(4) 1.3884(36)
DB3M3 7.2 -0.76 36 ⇥ 163 100 20 0.58767(4) 1.5155(28)
DB3M4 7.2 -0.77 36 ⇥ 243 100 20 0.588461(19) 1.5625(21)
DB3M5 7.2 -0.78 36 ⇥ 243 96 12 0.589257(20) 1.6370(29)
DB3M6 7.2 -0.79 36 ⇥ 243 100 20 0.590084(18) 1.7182(32)
DB3M7 7.2 -0.794 36 ⇥ 283 195 12 0.590429(9) 1.7640(18)
DB3M8 7.2 -0.799 40 ⇥ 323 150 12 0.590869(9) 1.8109(23)
DB4M1 7.4 -0.72 48 ⇥ 323 150 12 0.604999(7) 2.1448(25)
DB4M2 7.4 -0.73 48 ⇥ 323 150 12 0.605519(7) 2.2390(34)
DB5M1 7.5 -0.69 48 ⇥ 243 100 12 0.611900(13) 2.3463(84)

of the average plaquette hP i and the gradient flow scale w0 defined in Section 3.1, which
are measured from Nconfigs configurations separated by �traj trajectories. Throughout this
work we estimate the statistical uncertainties by using a standard bootstrapping method
for resampling [98].

3 Scale setting, topology and finite volume effects

All of the quantities computed from lattice simulation are dimensionless numbers, where
the dimensionalities are hidden by the lattice spacing a whose inverse corresponds to the
hard momentum cut-off ⇤cut. For instance the mass in lattice units can be written by
m

lat = ma. However, such a quantity is not appropriate to describe the continuum theory
since it vanishes in the continuum limit. To take a proper continuum extrapolation, it
is desired to define a reference scale with which all dimesionful quantities can have their
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Table 5. Masses and decay constants for pseudoscalar and scalar flavored-mesons in lattice units.
The pseudoscalar decay constant is renormalized via the one-loop perturbative matching as in
Eq. 4.7.

Ensemble amPS afPS amS mPS L fPS L

DB1M1 0.8344(11) 0.1431(7) 1.52(4) 13.351(17) 2.290(10)
DB1M2 0.7403(12) 0.1299(11) 1.44(4) 11.845(19) 2.079(17)
DB1M3 0.6276(14) 0.1147(8) 1.15(5) 10.042(23) 1.836(13)
DB1M4 0.5625(21) 0.1052(11) 1.290(20) 9.00(3) 1.683(18)
DB1M5 0.4813(10) 0.0943(6) 1.04(5) 7.701(16) 1.509(10)
DB1M6 0.3867(11) 0.0823(6) 1.032(25) 9.28(26) 1.977(13)
DB1M7 0.3388(12) 0.0765(6) 0.92(5) 8.13(3) 1.835(14)
DB2M1 0.4376(14) 0.0822(9) 0.88(3) 8.752(28) 1.645(17)
DB2M2 0.3311(11) 0.0670(5) 0.830(16) 7.946(26) 1.609(13)
DB2M3 0.2729(9) 0.0612(4) 0.777(13) 8.732(27) 1.958(12)
DB3M1 0.6902(11) 0.0994(9) 1.046(25) 11.043(18) 1.590(14)
DB3M2 0.5898(13) 0.0905(8) 0.994(16) 9.437(21) 1.449(13)
DB3M3 0.4700(13) 0.0772(6) 0.838(13) 7.521(21) 1.235(10)
DB3M4 0.4222(8) 0.0726(3) 0.792(11) 10.133(18) 1.743(8)
DB3M5 0.3702(9) 0.0666(4) 0.744(13) 8.884(21) 1.598(9)
DB3M6 0.3153(9) 0.0604(4) 0.646(18) 7.568(22) 1.448(9)
DB3M7 0.2874(7) 0.05755(28) 0.665(12) 8.048(19) 1.611(8)
DB3M8 0.2532(7) 0.0536(3) 0.598(17) 8.102(24) 1.714(10)
DB4M1 0.3190(5) 0.05452(23) 0.576(9) 10.208(15) 1.745(7)
DB4M2 0.2707(6) 0.04999(27) 0.548(8) 8.663(20) 1.600(9)
DB5M1 0.3264(9) 0.0529(4) 0.562(7) 7.835(23) 1.270(9)

however, they suffer from large statistical and systematical uncertainties when their masses
are extracted from the two-point correlation functions (see Appendix B). Furthermore, there
are not any theoretical reasons for those states to be degenerated. Higer-spin mesons can
decay into 2 and/or 3 pseudoscalars [92], but for all the ensembles considered the mesons
do not decay due to large pseudoscalar masses.

In order to compare the data obtained from ensembles at different bare parameters all
together, we must have a proper interpretation of those parameters in the corresponding
renormlized theory in the continuum limit. Such a procedure is also required to analyze the
data by using the continuum low-energy EFT. The first step is to set the scale by adopting
the GF scheme in Section 3.1: we define the meson masses and decay constants in units of
w0 using the hatted notation

m̂M ⌘ mMw0 = m
lat

M w
lat

0 and f̂M ⌘ fMw0 = f
lat

M w
lat

0 . (4.9)

As mentioned above, the perturbative renormalization has been taken account for the decay
constants. Now, the masses and the decay constants have their appropriate continuum
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Weak coupling regime

Negligible FV effects

where the lattice coupling is given by � = 8/g
2. The pineering lattice studies of Sp(2N)

Yang-Mills showed that a bulk phase transition is absent in the Sp(4) theory, implying that
one can in principle take the continuum limit by choosing any values of � [75].

We define the fermion sector by using the (unimproved) Wilson action for two mass-
degenerate Dirac fermions in the fundamental representation

Sf = a
3
X

x

 ̄(x) (4 + am0) (x)

�
1

2
a
3
X

x,µ

 ̄(x)
⇣
(1 � �µ)Uµ(x) (x + µ̂) + (1 + �µ)U †

µ(x � µ̂) (x � µ̂)
⌘

, (2.4)

where a is the lattice spacing and am0 is the bare mass in lattice units. In the case of
dynamical simulations with two Wilson-Dirac fermions, in contrast to the pure Sp(4) case,
we found a first-order bulk phase transition from our preliminary study on the mass scan of
average plaquette values hP i = 1

4

P
x

P
µ<⌫

trPµ⌫(x) [55]. By investigating the hysterises
in the trajectories of hP i started from cold (unit) and hot (random) configurations at
small lattice volume and the volume dependence of the plaquette susceptibilities, we have
determined the lower bound of the weak coupling regime, � & 6.8, where the continuum
extrapolation can be carried out safely. In this weak coupling regime the Wilson fermion
mass can be lowered smoothly before we touch the possible unphysical Aoki phase near the
massless limit [76]. For all ensembles considered in this work no sign of the Aoki phase has
been seen as we are presumably far from the massless limit.

2.2 Numerical setup

Using the lattice action in Eq. 2.1 we simulate the Sp(4) theory with two Dirac fermions in
the fundamental representation, where gauge configurations are generated by the standard
hybrid Monte Carlo (HMC) algorithm. In Ref. [55] we extensively discussed the numerical
techniques, such as the resymplecticization, necessary to simulate our mode by modifying
the Hirep code [77]. Since then, we have further improved the code in which we could
simulate an arbitrary number of N � 2 and reduce the size of a gauge configuration by
factor of two, where the details are presented in Appendix A.1.

The ensembles for dynamical simulations are summarized in Table 1. In the table we
present the values of lattice coupling � and bare fermion mass am0: the former are chosen
to be in the weak coupling regime ranged over 6.9 � 7.5, while the latter are chosen to be
light enough for which the low-energy effective theories are applicable. We consider the four
dimensional Euclidean lattice Nt⇥N

3
s with periodic boundary conditions in all directions for

gauge field, where Nt and Ns are the extents of temporal and spatial lattices, respectively.
The physical volume V = T ⇥ L

3 is restored by taking T = Nta and L = Nsa. For the
Dirac field, on the other hand, we implement periodic and anti-periodic boundary conditions
for spatial and temporal directions, respectively. All lattice volumes satisfy the condition
mPSL & 7.5, where amPS denotes the mass of pseudoscalar meson in lattice units extracted
from the two-point correlation functions as will be discussed in Section 4. This guarantees
that the volumes are large enough that the finite-size effects are under control, where a
related discussion is given in the follwing section. In the table we also present the results
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For the Wilson fermions the decay constants in the continuum are determined from lattice
ones as

fPS = ZAf
bare

PS , fV = ZVf
bare

V , and fAV = ZAf
bare

AV , (4.7)

where ZV and ZA are the renormalization factors for vector and axial-vector currents which
are expected to be unity in the continuum. Since the pseudoscalar decay constant fPS is
defined using the axial current as in Eq. 4.5, it receives renormalization with the factor
of ZA. To determine the renormalization factors we adopt the one-loop renormalization
proceedure in lattice perturbation theory for Wilson fermions, where the expressions for
the matching factors are given by [90]

ZA = 1 + C(F )
�
�⌃1 + ��5�µ

� g̃
2

16⇡2
,

ZV = 1 + C(F )
�
�⌃1 + ��µ

� g̃
2

16⇡2
. (4.8)

The eigenvalue of the quadratic Casimir operator with fundamental fermions is C(F ) = 5/4

for the Sp(4) gauge theory. The one-loop factor �⌃1 is from the wavefunction renormal-
ization of the external fermion lines, while the other �’s are from the one-loop computa-
tions of the vertex functions. The numerical values obtained by one-loop integrals within
the continuum MS (modified minimal subtraction) regularization scheme are as follows:
�⌃1 = �12.82, ��µ = �7.75 and ��5�µ = �3.0. The coupling used in Eq. 4.8 is de-
fined via the mean field approach to the link variable which effectively removes the tadpole
diagrams, g̃ = g

2
/hP i [91], where hP i is the average plaquette value.

4.2 Masses and decay constants

Using the techniques described in the previous section, we calculate meson masses and decay
constants for the ensembles in Table 1. The resulting values in lattice units are summarized
in Table 5 for pseudoscalar and scalar mesons and in Table 6 for vector, axial-vector, tensor,
axial-tensor mesons. The decay constants in the tables are the renormalized ones as defined
in Eq. 4.7. As expected, the pseudoscalar mesons are the lightest states for all ensembles.
In Table 5 we also present the numerical values of mPSL and fPSL. Our lattice volumes for
all ensembles are large enough to have the finite volume effects under control as discussed
in Section 3.4, i.e. mPSL & 7.5. Furthermore, all the values of fPS satisfy the condition
fPSL > 1, which gaurantees the power counting of the low-energy EFT as the symmetry
breaking scale is larger than the typical momentum scale of the system. As we will see, in
particular, for the ensembles to be used for the massless and continuum extrapolation we
find fPSL & 1.5.

In Table 6, one can immediately find that the masses of vector and tensor mesons are
in good agreement for given statistical uncertainties. This result may be understood from
the theoretical arguments for QCD of that the low-lying states identified by a given set
of quantum numbers (I, J

PC) can be a mixture of more than one chiral multiplet when
the global symmetry is strongly broken [85]. We also find that the masses of three heavier
states, scalar, axial-vector and axial-tensor, are roughly at the same scale. Notice that,
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Remarks on the lattice spacing & fermion mass

- Scale setting: Luscher’s gradient flow scales 
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Figure 5. The Wilson flow functions E(t) in eq. (4.2) (left panel) and W(t) in eq. (4.7) (right
panel) for Nf = 2, β = 6.9, am0 = −0.90 and L = 12, as a function of the flow time t, computed
by using the methods described in section 4.1.

The gradient flow serves as a smearing procedure for the gauge fields. This means

the larger the flow time, the smoother the resultant gauge configurations will be. In

other words, the larger the flow time is, the smaller the ultraviolet fluctuations of flown

observables. On the other hand, it also means the gauge fields become more extended

objects as the flow time grows. This results in longer autocorrelation time, and makes

the statistics worse. Furthermore, having cτ > 0.5 can lead to significant finite-volume

effects. These are issues one would have to consider carefully when choosing a value for

the constant E0 in eq. (4.4).

The action density E(t) at non-vanishing flow time is obtained from the diffusion

process in eq. (4.6), starting from the bare gauge fields. To further reduce the cut-off effects

in the scale-setting procedure, an alternative quantity was proposed in ref. [65]. Define

W(t) ≡ t
dE(t)
dt

. (4.7)

Then the scale can be set by

W(t)|t=w2
0
= W0, (4.8)

where W0 is again a dimensionless constant that one can choose.

On the lattice, the calculation of E(t) depends on a definition of Gµν , for which a

variety of choices are available. The most obvious is to associate it with the plaquette

Pµν ; an alternative is to define a four-plaquette clover, which has a greater degree of

symmetry [62]. In the continuum, all definitions should become equivalent, and at finite

lattice spacing the relative difference between the two decreases at large t. The shape of

E(t) at very small t is dominated by ultraviolet effects, and so differs strongly between the

two methods; this introduces further constraints into the choice of E0. Figure 5 shows E(t)
and W(t), calculated both via the plaquette and the clover. As anticipated from [65], the

discretisation effects are smaller in W(t) than E(t); this is visible in the splitting between

plaquette and clover curves being smaller in the W(t) case.6

6The relative size of discretisation effects in two different observables can also depend on the actions

used in the Monte Carlo simulations and the implementation of the gradient flow [66, 67], as well as the

flow time [68].
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- Fermion mass is replaced by 
pseudoscalar mass squared

Table 2. Results of the NLO fits for w0/a.

� w
�

0
/a k̃1 �

2/d.o.f
6.9 1.347(4) �0.896(12) 0.7

7.2 2.047(8) �0.545(10) 0.5

Section 4.2. We have further decided to use the four-plaquette clover for the calculation of
the action density E(t) in which smaller lattice artefacts are expected [78].

3.2 Chiral behavior of the flow scale

It is clearly seen from Fig. 1 that the scales depend on the fermion mass. Such a behavior
can be understood from the chiral expansion for the action density E(t) smoothed by the
gradient flow at positive flow time t [81]. Of course, from the point of view of an effective
field theory, it is assumed that the square root of the flow scale t0 is much smaller than
the Compton wavelength of the pseudoscalar meson. Using the tree level relation for the
pseudoscalar mass mPS and the fermion mass mf at the leading order (LO) in the chiral
expansion, m

2

PS
= 2Bmf , we find the next-to-the-leading-order (NLO) result for w0 [81]

w
NLO

0 (m2

PS) = w
�

0

✓
1 + k1

m
2

PS

(4⇡fPS)2

◆
, (3.5)

where w
�

0
and fPS are the GF scale defined above and the pseudoscalar decay constant in

the massless limit. For the numerical fits we consider

w
NLO

0 (m2

PS)/a = w
�

0
/a(1 + k̃1m̂

2

PS), (3.6)

where k̃1 and w
�

0
/a are free dimensionless parameters. Using the hatted notation introduced

above, we define the pseudoscalar mass in units of w0, i.e. m̂PS = w0 mPS. Note that in
principle it should be expanded in terms of w

�

0
mPS as the decay constant fPS in Eq. 3.5

is measured in the chiral limit. To our NLO expression, however, it is not harmful to
use w0 measured at given fermion mass since the difference only contributes to the higher
order terms in the chiral expansion. In practice, it is also convenient to use w0 which does
not involve any extrapolation, but required for w

�

0
. The measurement of mPS/a from the

dynamical ensembles in Table 1 will extensively be discussed in Section 4 and Appendix B,
while the numerical results are presented in Table 5. Throughout this section, we simply
borrow the results without going into the details.

For two values of the lattice coupling, � = 6.9 and 7.2, we performed the NLO fits to
the lattice data for w0 in Table 1, where only the five lightest ensembles are used. The
fit results are presented in Fig. 2, where the resulting values of the low-energy constants
are reported in Table 2. We have reasonable values of �

2/d.o.f., reflecting the fact that
the chiral perturbation theory for w0 well describes the data. Note that the linear mass
dependence of w0/a ceases at around m̂

2

PS
⇠ 0.4. As we will see, this is roughly the same
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Figure 5. The Wilson flow functions E(t) in eq. (4.2) (left panel) and W(t) in eq. (4.7) (right
panel) for Nf = 2, β = 6.9, am0 = −0.90 and L = 12, as a function of the flow time t, computed
by using the methods described in section 4.1.
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Figure 1. Gradient flow scales t0 and w0 with respect to bare quark mass am0 for � = 7.2.
Different symbols denote the different definitions of an action density, while different colours denote
the reference values of E0 and W0.

turn allows us to determine the relative size of a lattice spacing between ensembles obtained
by using different (bare) lattice parameters.

In our previous publication [55], we performed numerical studies on the GF scheme
for both quenched and dynamical simulations in great details and found that w0 has much
smaller cut-off effects compared to t0, where for the latter only a coarse lattice at � = 6.9

was considered. In particular, no significant deviation is found between the values of w0

obtained by using the action density at non-zero flow time E(t) constructed from an average
plaquette and a symmetric four-plaquette clover, where their definitions can be found in
[78]. Here we extend our previous work to a finer lattice with � = 7.2 and various fermion
masses. The results are presented in Fig. 1. We find that the measured values of w0 from
the two definitions of E(t) are in good agreement over the wide range of W0 and m0, while
the values of t0 are not. In particular, the differences for all the masses considered are
almost negligible for W0 = 0.3 ⇠ 0.4. Compared with the results from a coares lattice
in [55], the agreement in the flow scales is also greatly enhanced as expected that the
discretization artefacts diminish in the continuum limit. Based on such studies, we have
decided to use the gradient flow scale w0 computed with the reference value of W0 = 0.35 for
scale settings throughout this work, where the numerical results are presented in Table 1.
For the convenience we introduce a hatted notation to write the dimesionful quantities
in units of w0, e.g. m̂ = m

lat
w

lat
0

= mw0, where the lattice spacing a no longer appear
explicitly. Note that the lattice spacing will be revived as â = a/w0 when we discuss the
lattice-spacing artefacts to the meson spectrum and take the continuum extrapolation in
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continuum limit. Such a scale setting procedure can also be understood as the determination
of a lattice spacing a at a given bare coupling g. In this work, we set the scale by utilizing the
Lüscher’s gradient flow (GF) techniques [78] from which we can take two major advantages
aside from the fact that it is accurately calculated with a low numerical effort. First of all,
the reference scale is defined on fully theoretical grounds, which is crucial to current studies
because all measured quantities have no experimental results to be compared. Secondly,
the topological charge Q is a well defined quantity as the gradient flow is a kind of smearing
procedure in which ultraviolet (UV) fluctuations are strongly suppressed. In addition to
the scale setting, we discuss finite volume effects in various measurements and argue that
those effects are under control as which in most cases their sizes are compatible with the
statistical uncertainties.

3.1 Gradient flow and scale setting

We begin with the gauge field Aµ(x) at the space-time coordinates x in a four-dimensional
non-abelian gauge theory. Then, the gradient flow is defined by a diffusion equation for a
gauge field Bµ(t, x) at the fiticious flow time t

dBµ(t, x)

dt
= D⌫G⌫µ(t, x), with Bµ(0, x) = Aµ(x), (3.1)

where D⌫ is the covariant derivatice in terms of B⌫ and Gµ⌫ = [Dµ, D⌫ ] the field strength
tensor. Along the flow time the gauge fields at UV evolve into renormalized gauge fields
smoothed over a radius of

p
8t, the characteristic scale of the diffusion process. Then, as

shown in Ref. [79], the correlation functions of the field at t > 0 are finite to all orders
of the perturbation theory, provided that the four-dimentional theory is renormalised as
usual. In particular, the following gauge-invariant observable do not require any additional
renormaliation other than that at zero flow time,

E(t, x) = �
1

2
trGµ⌫(t, x)Gµ⌫(t, x), (3.2)

where its expectation value is proportional to the inverse of the flow time squared.
In the literature, there are two different proposals for defining the gradient flow scale,

namely t0 [78] and w0 [80]. These scales are determined in the following procedure. We
first define the dimensionless observables at the positive flow time t,

E(t) = t
2
hE(t)i, and W(t) =

d
d lnt

t
2
hE(t)i. (3.3)

where E(t) is the action density defined in Eq. 3.2. Then the scales are set by imposing the
conditions

E|t=t0 ⌘ E0, and W|
t=w

2
0

⌘ W0. (3.4)

Here E0 and W0 are dimensionless reference values that one can choose, and the correspond-
ing scales t0 and w0 can be used for our yardstick to measure all dimesionful quantities. In
numerical studies what we measure is the dimensionless quantity of t0/a

2 or w0/a, which in
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Table 5. Masses and decay constants for pseudoscalar and scalar flavored-mesons in lattice units.
The pseudoscalar decay constant is renormalized via the one-loop perturbative matching as in
Eq. 4.7.

Ensemble amPS afPS amS mPS L fPS L

DB1M1 0.8344(11) 0.1431(7) 1.52(4) 13.351(17) 2.290(10)
DB1M2 0.7403(12) 0.1299(11) 1.44(4) 11.845(19) 2.079(17)
DB1M3 0.6276(14) 0.1147(8) 1.15(5) 10.042(23) 1.836(13)
DB1M4 0.5625(21) 0.1052(11) 1.290(20) 9.00(3) 1.683(18)
DB1M5 0.4813(10) 0.0943(6) 1.04(5) 7.701(16) 1.509(10)
DB1M6 0.3867(11) 0.0823(6) 1.032(25) 9.28(26) 1.977(13)
DB1M7 0.3388(12) 0.0765(6) 0.92(5) 8.13(3) 1.835(14)
DB2M1 0.4376(14) 0.0822(9) 0.88(3) 8.752(28) 1.645(17)
DB2M2 0.3311(11) 0.0670(5) 0.830(16) 7.946(26) 1.609(13)
DB2M3 0.2729(9) 0.0612(4) 0.777(13) 8.732(27) 1.958(12)
DB3M1 0.6902(11) 0.0994(9) 1.046(25) 11.043(18) 1.590(14)
DB3M2 0.5898(13) 0.0905(8) 0.994(16) 9.437(21) 1.449(13)
DB3M3 0.4700(13) 0.0772(6) 0.838(13) 7.521(21) 1.235(10)
DB3M4 0.4222(8) 0.0726(3) 0.792(11) 10.133(18) 1.743(8)
DB3M5 0.3702(9) 0.0666(4) 0.744(13) 8.884(21) 1.598(9)
DB3M6 0.3153(9) 0.0604(4) 0.646(18) 7.568(22) 1.448(9)
DB3M7 0.2874(7) 0.05755(28) 0.665(12) 8.048(19) 1.611(8)
DB3M8 0.2532(7) 0.0536(3) 0.598(17) 8.102(24) 1.714(10)
DB4M1 0.3190(5) 0.05452(23) 0.576(9) 10.208(15) 1.745(7)
DB4M2 0.2707(6) 0.04999(27) 0.548(8) 8.663(20) 1.600(9)
DB5M1 0.3264(9) 0.0529(4) 0.562(7) 7.835(23) 1.270(9)

however, they suffer from large statistical and systematical uncertainties when their masses
are extracted from the two-point correlation functions (see Appendix B). Furthermore, there
are not any theoretical reasons for those states to be degenerated. Higer-spin mesons can
decay into 2 and/or 3 pseudoscalars [92], but for all the ensembles considered the mesons
do not decay due to large pseudoscalar masses.

In order to compare the data obtained from ensembles at different bare parameters all
together, we must have a proper interpretation of those parameters in the corresponding
renormlized theory in the continuum limit. Such a procedure is also required to analyze the
data by using the continuum low-energy EFT. The first step is to set the scale by adopting
the GF scheme in Section 3.1: we define the meson masses and decay constants in units of
w0 using the hatted notation

m̂M ⌘ mMw0 = m
lat

M w
lat

0 and f̂M ⌘ fMw0 = f
lat

M w
lat

0 . (4.9)

As mentioned above, the perturbative renormalization has been taken account for the decay
constants. Now, the masses and the decay constants have their appropriate continuum
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Figure 10. Masses squared for vector, axial-vector, and scalar mesons with respect to the pseu-
doscalar mass squared for � = 6.9 (blue), 7.05 (purple), 7.2 (green), and 7.4 (red). The fit results
of the continuum and massless extrapolations are denoted by the grey bands.

value (VEV) of a bi-fundamental scalar transforming under GHLS . An antisymmetric scalar
of SU(4)A with a non-zero VEV additionally breaks the global symmetry, which results in
GHLS ! Sp(4) in the end with parts of the coset being identified by the five (massive)
PNGBs. The resulting EFT involves 12 low-energy constants (LECs) which are in priciple
determined from the measured masses and the decay constants of PS, V, and AV mesons.

Our preliminary study on quenched meson spectra showed that the EFT qualitatively
well described the numerical data, but the determination of LECs was not successful due
to the following two major difficulties. First of all, the quenched data in Ref. [55] largely
suffered from uncontrolled systematics such as quenching effects and discretization artefacts.
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generate new operators along the flow time (counter-terms), keeping the renormalisation

of the five-dimensional theory simple.4

The Yang-Mills gradient flow of the gauge field Bµ(t, x) is implemented via the equation

dBµ(t, x)

dt
= DνGνµ(t, x) ,with Bµ(t, x)|t=0 = Aµ(x), (4.1)

where Gµν is the field strength tensor associated with Bµ(t, x), Dµ = ∂µ + [Bµ, ·] the
corresponding covariant derivative, and Aµ(x) the initial gauge field in the four-dimensional

theory. Noticing that eq. (4.1) describes a diffusion process, the flow time t therefore

has length-dimension two. It has been shown that, to all orders in perturbation theory,

any gauge invariant composite observable constructed from Bµ(t, x) is renormalised at

t > 0 [63]. In particular, Lüscher demonstrated that the action density can be related to

the renormalised coupling, α(µ), at the leading order in perturbation theory through

α(µ) = kαt
2⟨E(t)⟩ ≡ kαE(t) , (4.2)

with µ = 1√
8t
, and

E(t) = −1

2
Tr(GµνGµν) . (4.3)

The dimensionless constant kα is analytically computable [62]. Equation (4.2) can actually

serve as the definition of a renormalisation scheme: the gradient-flow (GF) scheme. Fur-

thermore, since t2⟨E(t)⟩ ≡ E is proportional to the GF-scheme coupling, this quantity can

be used to set the scale. In other words, if one imposes the condition

E(t)|t=t0 = E0 , (4.4)

where E0 is a constant that one can choose, then
√
t0 should be a common length scale,

assuming lattice artefacts are under control. In practice, one measures
√
t0 in lattice units.

That is, one computes
√
t0/a ≡

√
t̂0. This allows the determination of the ratio of lattice

spacings from simulations performed at different values of the bare parameters.

It is worth mentioning that the diffusion radius in eq. (4.1) is
√
8t, and it is convenient

to define the ratio

cτ =
√
8t/L , (4.5)

where L is the lattice size.

Given that the right-hand side of eq. (4.1) is the gradient of the Yang-Mills action, the

most straightforward way to latticise it is5

∂Vµ(t, x)

∂t
= −g20

{
∂x,µS

(flow)
latt [Vµ]

}
Vµ(t, x), Vµ(0, x) = Uµ(x) , (4.6)

where Vµ(t, x) is the gauge link at flow time t, and S(flow)
latt is a lattice gauge action. Notice

that S(flow)
latt does not have to be the same as the gauge action used in the Monte Carlo

simulations. We employ the Wilson flow where S(flow)
latt is the Wilson plaquette action.

4See ref. [64] for a choice of the flow equation that induces the need for extra care of renormalisation in

the φ4 scalar field theory.
5The precise meaning of the Lie-algebra valued derivative ∂x,µ is given in ref. [62].
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Observables: flavored mesons

- Interpolating operators of flavored spin-0 and spin-1 mesons (         )

- Masses and decay constants (only for PS, V and AV) are extracted from 
two-point correlation functions as usual.

- Decay constants are renormalized by using the one-loop perturbative 
matching with tad-pole improvement. QCD analog of        in our 
convention is                       .

where Si(x; y) = hQi(x)Qi(y)i is the vacuum expectation values for the fermion propagators
and the trace Tr [· · · ] is carried out over the spinor and colour indices. For numerical studies
of the meson two point correlators we use Z2 ⇥ Z2 single time slice stochastic sources [87].

Aside from the mesons, diquarks are also in the low-energy spectrum after the global
SU(4) symmetry breaking because of the pseudoreal nature of the symplectic gauge group.
For instance, five PNGBs, multiplets of the unbroken Sp(4) include two diquarks with
� = �5 along with the usual three pseudo-scalar mesons in the Dirac basis 2. However, we
do not calculate the diquark correlators as they are identical to the corresponding meson
correlators. While a general discussion for both real and pseudoreal representations can
be found in Ref. [89], in Appendix A.2 we explicitly show the equivalence of meson and
diquark correlators by using our lattice action in Eq. 2.4. Such an analysis for SU(2) theory
with two fundamental fermions is found in Ref. [38].

At large Euclidean time t the correlation functions in Eq. 4.3 are dominated by the
ground state at zero spatial momentum whose energy corresponds to the mass mM

COM (t)
t!1
���! h0|OM |Mih0|OM |Mi

⇤
1

2mM

h
e
�mM t + e

�mM (T�t)

i
, (4.4)

where T and L are the temporal and spacial extents of the lattice, respectively. While
meson masses are determined by the decay rate of exponentially falling COM (t) with t,
decay constants are determined from the matrix elements parameterised by

h0|Q1�5�µQ2|PSi = fPSpµ,

h0|Q1�µQ2|Vi = fVmV✏µ,

h0|Q1�5�µQ2|AVi = fAVmAV✏µ, (4.5)

where ✏µ is the polarization vector which is transverse to the momentum pµ and normalized
by ✏

⇤
µ✏

µ = 1. Our convention for the meson states |Mi are the self-adjoint isospin fields,
i.e. M = M

i
T
i. In QCD the analogous experimental value of the pion (psudoscalar) decay

constant is f⇡ ' 93 MeV. As seen in Eq. 4.5, the pseudoscalar decay constant is defined
via the local axial current. Therefore, to caculate the decay constant of the pseudoscalar
meson, we introduce an additional two-point correlation function

C⇧(t) =
X

~x

h0|[Q1�5�µQ2(~x, t)] [Q1�5Q2(~0, 0)]|0i

t!1
���!

fPSh0|OPS|PSi
⇤

2

h
e
�mPSt � e

�mPS(T�t)

i
, (4.6)

where h0|OPS|PSi
⇤ can be obtained from COPS(t) in Eq. 4.4. In practice we calculate mPS

and fPS by performing a simultaneous fit to the numerical data for COPS(t) and C⇧(t). The
details of fitting the meson correlators including their effective masses and best-fit ranges
are provided in Section B.

The matrix elements in Eq. 4.5 calculated from the lattice with a finite lattice spacing a

should be converted to the ones with a continuum regularization, so are the decay constants.
2 The full expressions of spin-0 and spin-1 meson operators in the bases of both four-component Dirac

and two-component Weyl spinors can be found in our future publications [88].
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Label Interpolating operator (OM ) Meson J
PC

PS Qi�5Q
j

⇡ 0�+

S QiQ
j

a0 0++

V Qi�µQ
j

⇢ 1��

T Qi�0�µQ
j

⇢ 1��

AV Qi�5�µQ
j

a1 1++

AT Qi�5�0�µQ
j

b1 1+�

Table 4. Interpolating operators OM sourcing the lightest (pseudo-)scalar, (axial-)vector and
(axial-)tensor mesons. The flavour indices of the Dirac fermions in OM are not equal, i 6= j, while
color and spinor indices are summed and omitted.

4 Meson spectroscopy and decay constants

4.1 Two-point correlation function

We extract the masses and the decay constants of mesons by studying the behaviour of
their two-point correlation functions in the large Euclidean time t as usual. To do that,
we first construct interpolating operators which carry the same quantum numbers with the
desired meson states

OM (x) ⌘ Qi(x)�Q
j(x), (4.1)

where i 6= j is flavor index, and �s’ are the corresponding Dirac structures which are sum-
marized in Table 4. The summations over spinor and colour indices are understood. Our
inerests are primarily focused on the lightest spin-0 and spin-1 mesons, denoted by PS, V
and AV for pseudoscalar, vector and axial-vector mesons, where one can take a full advan-
tage of the low-energy effective field theory developed in [55]. We also consider additional
interpolating operators with the Dirac structures of 1, �

0
�
µ
, �

5
�
0
�
µ, but only calculate

their masses. We note that our numerical studies are restricted to the flavored mesons, i.e.
the flavor indices of the interpolating operators are different, where the analogous mesons
in QCD are ⇡, ⇢, a1, a0, and b1 respectively. Provided that the global symmetry is broken,
the states created by the interpolating operators for V and T are mixed, where the low-
lying states are identified by ⇢ meson in QCD language (see [85] and references theirin). In
addition, the states interpolated by PS and T have their U(1)A partners interpolated by S
and T, respectively (for instance, see Fig. 1 of Ref. [86]).

Using the meson interpolating operators OM in Table 4 we define the zero-momentum
Euclidean two-point correlation functions at positive Euclidean time t

COM (t) =
X

~x

h0|OM (~x, t)O†

M
(~0, 0)|0i. (4.2)

After performing the Wick contractions we rewrite the correlation functions

COM (t) = �

X

~x

Tr
h
�Sj(x; 0)�0�†

�
0
Si(0; x)

i
, (4.3)
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in QCD are ⇡, ⇢, a1, a0, and b1 respectively. Provided that the global symmetry is broken,
the states created by the interpolating operators for V and T are mixed, where the low-
lying states are identified by ⇢ meson in QCD language (see [85] and references theirin). In
addition, the states interpolated by PS and T have their U(1)A partners interpolated by S
and T, respectively (for instance, see Fig. 1 of Ref. [86]).

Using the meson interpolating operators OM in Table 4 we define the zero-momentum
Euclidean two-point correlation functions at positive Euclidean time t

COM (t) =
X

~x

h0|OM (~x, t)O†

M
(~0, 0)|0i. (4.2)

After performing the Wick contractions we rewrite the correlation functions

COM (t) = �

X

~x

Tr
h
�Sj(x; 0)�0�†

�
0
Si(0; x)

i
, (4.3)
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Continuum and massless extrapolation

Figure 7. Mass squared for vector and tensor mesons versus pseudoscalar mass squared m̂
2
PS,

where different colours are for different lattice couplings as shown in the legends, The error bars
represent the sizes of statistical uncertainties, see Appendix B for the details.

theory to include the corrections from a finite lattice spacing, so called Wilson chiral per-
turbation theory (W�PT). To do that, we have to explicitly introduce the lattice spacing
in units of w0,

â ⌘ a/w0 = 1/w
lat

0 . (4.10)

This is a natural way of estimating the discretization effects in a unified manner as we
already measured all the dimesionful quantities in units of w0.

Let us first consider the tree-level expression for the pseudoscalar decay constant at
the next-to-the-leading order in the W�PT,

f̂
NLO

PS = f̂
�
⇣
1 + b̂

�
f m̂

2

PS

⌘
+ Ŵ

�
f â, (4.11)

where f̂
� = f

�
w

�
0

is the pseudoscalar decay constant in the massless and continuum limit.
The LECs b̂

�
f and Ŵ

�
f control the size of corrections due to finite mass and finite lattice

spacing, respectively. Note that in principle one should also measure m
2

PS
and a in units of
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where different colours are for different lattice couplings as shown in the legends, The error bars
represent the sizes of statistical uncertainties, see Appendix B for the details.
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massless limit as well as is only available for two values of �. Beside such a practical reason,
the replacement of w0 by w

�
0

makes no change of the NLO EFT leaving the differences at
higher orders in m

2

PS
. Compared to the continuum NLO expression in Ref. [93], a minor

change is the shift of the LEC b̂
�
f by k̃1 in Eq. 3.6 since we actually fit the data of fPSw0.

The underlying assumption of the tree-level NLO W�PT is that we are in the regime

p
2

⇤2
�

<
m

2

PS

⇤2
�

⇠ a⇤� < 1, (4.12)

where p is the external momentum and ⇤� is the symmetry breaking scale. In Section 3.2,
we found that the NLO EFT result well describes the numerical data of ŵ0 up to m̂

2

PS
⇠ 0.4.

Similarily, the numerical results of the pseudoscalar decay constants squared in Figs. 6 show
linear mass dependence over the range of m̂

2

PS
⇠ [0.15, 0.4]. The symmetry breaking scale

⇤� may roughly be estimated by 4⇡fPS. Using the (bare) results in Table 1 over the above
mass range, we then find naive estimations for the three mass scales associated with the
power counting for the tree-level NLO W�PT

p
2

⇤2
�

: 0.06 ⇠ 0.12,
m

2

PS

⇤2
�

: 0.13 ⇠ 0.2, and a⇤� : 0.6 ⇠ 1.4. (4.13)

The resulting values are roughly consistent with the scale separation in Eq. 4.12 except that
a⇤� for some ensembles are greater than unity. To have a better control on the discretization
artefacts in the EFT fits, hence, we further constrain the esembles to satisfy the condition
â . 1 or equivalently a⇤� . 1.1. The corresponding ensembles are DB1M5�7, DB2M1�3,
DB3M5�8, and DB4M2, which will be used for the continuum and massless extrapolations
by employing the tree-level NLO W�PT. Although Eq. 4.13 provides a rough idea on the
validity of the tree-level NLO EFT, we note that it should be confirmed from the actural
fits of the data.

The linear dependence of f̂
NLO

PS
on m

2

PS
and â can be translated into the linear be-

haviours of f̂
2,NLO

PS
up to higher order corrections of O(m̂4

PS
; âm̂

2

PS
; â

2). As we will dis-
cuss in the next section, the continuum tree-level NLO results of mass squared and decay
constant squared for spin-1 mesons developed in [55] also have the leading corrections at
O(m2

PS
). Inspired by those results, therefore, we consider the following linear anzats for

the numerical fits

f̂
2,NLO

M = f̂
2,�
M

�
1 + L

0

f,Mm̂
2

PS

�
+ W

0

f,M â (4.14)

for the decay constants squared of PS, V, and AV, and

m̂
2,NLO

M = m̂
2,�
M

�
1 + L

0

m,Mm̂
2

PS

�
+ W

0

m,M â (4.15)

for the masses squared of V, AV, S, T and AT. As discussed above we restrict ourselves to
the ligh ensembles for the fits of f̂

2

PS
. On the other hands, the results for V, AV, S, T and

AT mesons in Figs. 6 and 8 exhibit the linear behaviors on m̂
2

PS
at even heavier ensembles.

Suggested by this fact we have extended the upper bound of m̂
2

PS
to ⇠ 0.6 while keeping

the same condition for the lattice spacing â . 1.
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. On the other hands, the results for V, AV, S, T and
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at even heavier ensembles.
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- (tree-level) Wilson-like chiral perturbation theory at NLO

- Power counting

- Exclude coarse lattices from the fits

Over the small mass region
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Figure 7. Mass squared for vector and tensor mesons versus pseudoscalar mass squared m̂
2
PS,

where different colours are for different lattice couplings as shown in the legends, The error bars
represent the sizes of statistical uncertainties, see Appendix B for the details.

theory to include the corrections from a finite lattice spacing, so called Wilson chiral per-
turbation theory (W�PT). To do that, we have to explicitly introduce the lattice spacing
in units of w0,

â ⌘ a/w0 = 1/w
lat

0 . (4.10)

This is a natural way of estimating the discretization effects in a unified manner as we
already measured all the dimesionful quantities in units of w0.

Let us first consider the tree-level expression for the pseudoscalar decay constant at
the next-to-the-leading order in the W�PT,

f̂
NLO

PS = f̂
�

⇣
1 + b̂

�

f
m̂

2

PS

⌘
+ Ŵ

�

f
â, (4.11)

where f̂
� = f

�
w

�

0
is the pseudoscalar decay constant in the massless and continuum limit.

The LECs b̂
�

f
and Ŵ

�

f
control the size of corrections due to finite mass and finite lattice

spacing, respectively. Note that in principle one should also measure m
2

PS
and a in units of
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Figure 5. Pseudoscalar masses squared and decay constants squared (left) and GMOR relation
(right). Green plus and blue cross symbols are for m̂

2
PS and f̂

2
PS, respectively.

However, practically it would be wise to check whether we are in the right regime at
which the LO mass relation works. To illustrate this point, we present the pseudoscalar
masses squared m̂

2

PS
and decay constants squared f̂

2

PS
with respect to the bare mass after

subtracting the addictive renormalization, m̂0 � m̂
c

0
, for ensembles at � = 7.2 with various

bare masses in the left panel of Fig. 5.3 The critical mass m̂
c

0
has numerically been deter-

mined from the linear fit to the lightest five data points at which m̂
2

PS
= 0. As shown in

the figure, the pseudoscalar mass squared is qualitatively linear in the mass, which starts
to deviate from the linearity for m̂

2

PS
> 0.4. The decay constant squared also show a linear

behavior, but its slope is quite steeper than expected. Such a large mass dependence of
f̂
2

PS
is responsible for the violation of the leading-order Gell-Mann-Oakes-Renner (GMOR)

relation, m
2

PS
f
2

PS
= mf h ̄ i, over the range of mass considered, as seen in the right panel of

Fig. 5. Although the mass dependence of the cut-off scale is supposed to be small for a given
value of �, we warn the reader that a precise determination of the mass renormalization is
required for the proper discussion of the GMOR relation.

In Fig. 6 we show the numerical results of the decay constants squared for PS, V and
AV mesons, while in Figs. 7 and 8 the masses squared for V, T and S, AV, AT mesons as
functions of m̂

2

PS
, respectively. Our first observation is that discretization effects in f̂

2

PS
and

m̂
2

V
(or m̂

2

T
) are significant as seen from clear deviations between data with different lattice

couplings denoted by different colours. For other quantities the deivations are not visible
due to large statistical uncertainties. Secondly, the masses and the decay constants except
f̂
2

AV
decrease as we appraoch the massless limit. Overall, the masses and decay constants

show linear mass dependence in the wide range of small mass region.

4.3 Continuum extrapolation

We are now at the position to perform the continuum extrapolation to eliminate the dis-
cretization artefacts in the meson masses and decay constants. In the absence of a physical
reference point, one can still do it systematically by extending the continuum effective field

3 Note that all the dimesionful quantities are normalized by the flow scale w0. The transition from
m2

PS = 2Bmf to m̂2
PS = 2B̂m̂f is understood up to higher order corrections of O(m̂4

PS).
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â . 1 or equivalently a⇤� . 1.1. The corresponding ensembles are DB1M5�7, DB2M1�3,
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validity of the tree-level NLO EFT, we note that it should be confirmed from the actural
fits of the data.
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the ligh ensembles for the fits of f̂
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. On the other hands, the results for V, AV, S, T and

AT mesons in Figs. 6 and 8 exhibit the linear behaviors on m̂
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at even heavier ensembles.

Suggested by this fact we have extended the upper bound of m̂
2

PS
to ⇠ 0.6 while keeping

the same condition for the lattice spacing â . 1.
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Continuum & massless extrapolations: Decay constants
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massless limit as well as is only available for two values of �. Beside such a practical reason,
the replacement of w0 by w

�

0
makes no change of the NLO EFT leaving the differences at

higher orders in m
2

PS
. Compared to the continuum NLO expression in Ref. [93], a minor

change is the shift of the LEC b̂
�

f
by k̃1 in Eq. 3.6 since we actually fit the data of fPSw0.

The underlying assumption of the tree-level NLO W�PT is that we are in the regime

p
2

⇤2
�

<
m

2

PS

⇤2
�

⇠ a⇤� < 1, (4.12)

where p is the external momentum and ⇤� is the symmetry breaking scale. In Section 3.2,
we found that the NLO EFT result well describes the numerical data of ŵ0 up to m̂

2

PS
⇠ 0.4.

Similarily, the numerical results of the pseudoscalar decay constants squared in Figs. 6 show
linear mass dependence over the range of m̂

2

PS
⇠ [0.15, 0.4]. The symmetry breaking scale

⇤� may roughly be estimated by 4⇡fPS. Using the (bare) results in Table 1 over the above
mass range, we then find naive estimations for the three mass scales associated with the
power counting for the tree-level NLO W�PT

p
2

⇤2
�

: 0.06 ⇠ 0.12,
m

2

PS

⇤2
�

: 0.13 ⇠ 0.2, and a⇤� : 0.6 ⇠ 1.4. (4.13)

The resulting values are roughly consistent with the scale separation in Eq. 4.12 except that
a⇤� for some ensembles are greater than unity. To have a better control on the discretization
artefacts in the EFT fits, hence, we further constrain the esembles to satisfy the condition
â . 1 or equivalently a⇤� . 1.1. The corresponding ensembles are DB1M5�7, DB2M1�3,
DB3M5�8, and DB4M2, which will be used for the continuum and massless extrapolations
by employing the tree-level NLO W�PT. Although Eq. 4.13 provides a rough idea on the
validity of the tree-level NLO EFT, we note that it should be confirmed from the actural
fits of the data.

The linear dependence of f̂
NLO

PS
on m

2

PS
and â can be translated into the linear be-

haviours of f̂
2,NLO

PS
up to higher order corrections of O(m̂4

PS
; âm̂

2

PS
; â

2). As we will dis-
cuss in the next section, the continuum tree-level NLO results of mass squared and decay
constant squared for spin-1 mesons developed in [55] also have the leading corrections at
O(m2

PS
). Inspired by those results, therefore, we consider the following linear anzats for

the numerical fits

f̂
2,NLO

M
= f̂

2,�

M

�
1 + L

0

f,M
m̂

2

PS

�
+ W

0

f,M
â (4.14)

for the decay constants squared of PS, V, and AV, and

m̂
2,NLO

M
= m̂

2,�

M

�
1 + L

0

m,Mm̂
2

PS

�
+ W

0

m,M â (4.15)

for the masses squared of V, AV, S, T and AT. As discussed above we restrict ourselves to
the ligh ensembles for the fits of f̂

2

PS
. On the other hands, the results for V, AV, S, T and

AT mesons in Figs. 6 and 8 exhibit the linear behaviors on m̂
2

PS
at even heavier ensembles.

Suggested by this fact we have extended the upper bound of m̂
2

PS
to ⇠ 0.6 while keeping

the same condition for the lattice spacing â . 1.
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Continuum & massless extrapolations: Masses
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Hidden local symmetry and EFT
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Figure 1. The moose diagram representing the low-energy EFT description of the model
in eq. (2.16), along the lines of HLS [45–49] (see also [50–53]). The two sites represent the
SU(4)A × SU(4)B global symmetry. The scalar S transforms on the bifundamental representation,
while Σ is antisymmetric. The SU(4)A group is gauged with coupling gρ, while the SU(2)L×U(1)Y
SM subgroup of SU(4)B can be weakly gauged, with couplings g and g′. In most of this paper
we set g = 0 = g′, and hence ignore the interactions of the strongly coupled dynamics with the
standard-model fields.

2.1.2 Hidden Local Symmetry description of ρ and a1

Hidden Local Symmetry provides a way to include spin-1 excitations such as the ρ mesons

into the EFT treatment, hence extending the validity of the chiral Lagrangian (see for

instance [45–49] and also [50–53]). While very appealing on aesthetics grounds, when

applied to QCD such idea shows severe limitations: the heavy mass and non negligible

width of the ρmesons imply that the weak-coupling treatment is not fully reliable. Yet, this

description offers a nice way to classify operators and it is expected to become more reliable

at large-N [49]. As we envision future studies with larger Sp(2N) groups, it is useful to

show the construction already in the programmatic part of this paper, and test it on Sp(4).

The full set of ρ and a1 mesons spans the adjoint representation of the global SU(4)

symmetry. An EFT description of their long-distance dynamics can be built starting from

the diagram in figure 1. The 15 spin-1 fields are introduced as gauge fields of SU(4)A. Two

scalars, the antisymmetric Σ of SU(4)A, and the bi-fundamental S, transform as

Σ → UAΣU
T
A , S → UB S U †

A , (2.12)

under the action of UA ∈ SU(4)A and UB ∈ SU(4)B. The VEV of S breaks the enlarged

symmetry and provides mass for all the vectors. S is subject to the constraints S†S = I4,
that are solved by parametrising S = e

2iσ
F , with σ = σATA and F the decay constant. At

the same time, we parametrise Σ = e
2iπ
f Ω, in such a way that the two scalars together

implement the breaking SU(4)A × SU(4)B → Sp(4), and describe the 15 exact Goldstone

bosons that are higgsed away into the longitudinal components of the massive spin-1 states,

as well as the remaining 5 (massive) PNGB, denoted as π̄A in the following.

In composite Higgs models, the SM gauge group SU(2)L × U(1)Y is a subgroup of

SU(4)B, and it is chosen to be a subgroup of the unbroken global Sp(4). The covariant

derivative of S is given by

DµS = ∂µS + i
(
gWµ + g′Bµ

)
S − iSgρAµ , (2.13)
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with Aµ = AA
µT

A and TA the generators of SU(4)A, while Wµ = W i
µt

i
L and Bµ are the

gauge bosons of SU(2)L ×U(1)Y . The covariant derivative of Σ is

DµΣ = ∂µΣ+ i
[
(gρAµ)Σ + Σ(gρAµ)

T
]

(2.14)

=
{
∂µe

2iπ
f + i

[
(gρAµ)e

2iπ
f − e

2iπ
f Ω(gρAµ)

TΩ
]}

Ω , (2.15)

where we have made use of the fact that Ω2 = −I4. From this point onwards, we set

g = 0 = g′, and focus on the dynamics of the strongly-coupled new sector in isolation from

the SM fields.

We write the Lagrangian density describing the 15 gauge bosons AA
µ , as well as the 20

pseudo-scalar fields πA and σA, as

L = −1

2
Tr AµνA

µν − κ

2
Tr
{
AµνΣ(A

µν)TΣ∗}

+
f2

4
Tr
{
DµΣ (DµΣ)†

}
+

F 2

4
Tr
{
DµS (DµS)†

}

+b
f2

4
Tr
{
Dµ(SΣ) (D

µ(SΣ))†
}

+ c
f2

4
Tr
{
Dµ(SΣS

T )
(
Dµ(SΣST )

)†}

−v3

8
Tr
{
M S ΣST

}
+ h.c. (2.16)

−v1
4
Tr
{
M (DµS)Σ (DµS)T

}
− v2

4
Tr
{
M S (DµΣ) (D

µS)T
}

+ h.c.

−y3
8
Tr
{
AµνΣ

[
(Aµν)TSTMS − STMSAµν

]}
+ h.c.

−y4
8
Tr
{
AµνΣ

[
(Aµν)TSTMS + STMSAµν

]}
+ h.c.

− v25
128

(
TrMSΣST + h.c.

)2
.

The first line of eq. (2.16) depends on the field-strength tensor Aµν of the gauge group,

and includes the symmetry-breaking term controlled by κ, that would be omitted from the

linear-sigma model version of the same EFT. The covariant derivatives of combinations of

S and Σ are defined in the obvious way, generalising the covariant derivatives of S and Σ.

The mass deformations are introduced via a new spurion M and via combination of fields

such as SΣST , that transforms as SΣST → UBSΣSTUT
B . The spurion differs from the one

in the chiral Lagrangian as it formally transforms as M → U∗
BMU †

B. In this way the whole

Lagrangian is manifestly SU(4)A gauge invariant.2

In the expansion, we include two sets of operators. We call leading order (LO) the

ones appearing in the first four lines, controlled by the parameters F , f , b, c, κ, gρ and v.

This is an exhaustive set of operators, at this order. We call next-to-leading order (NLO)

those in the last four lines, controlled by the parameters v1, v2, y3, y4 and v5. As we will

discuss shortly, the list of NLO operators is incomplete. In total there are 12 parameters.

This Lagrangian has to be used with caution. The appearance of ρ and a1 fields in the

2If part of the SU(4)B were gauged, as in technicolor models, then one might be forced to work in the

m = 0 limit. But further discussion of this point can be found in appendix B.
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- Weakly gauging the SU(4) global symmetry    
& providing mass to V and AV by 

- NLO EFT Lagrangian from Hidden local symmetry (HLS)

Bando, Kugo & Yamawaki (1985)

Bennett et al (2018)

LO

NLO

JWL & Lucini, 
(Lattice 2017)

where the dimesionful LECs are normalized by w0 and part of them absorb the coefficient
2B̂ = 2Bw0 of the LO relation for m̂

2

PS

f̂ = fw0, F̂ = Fw0, ŷ3 =
y3

2B̂w0

, ŷ4 =
y4

2B̂w0

, v̂1 =
v1w0

2B̂
, v̂2 =

v2w0

2B̂
. (5.6)

m̂
2

V =
g
2

V
(bf̂2 + F̂

2)

4(1 + )
+

2v̂1( + 1) � ŷ3(bf̂2 + F̂
2)

4( + 1)2
g
2

Vm̂
2

PS + O(m̂4

⇡), (5.7)

m
2

V =
1

4(1 +  + my3)
g
2

V (bf2 + F
2 + 2mv1) (5.8)

m
2

AV =
1

4(1 �  � my4)
g
2

V (bf2 + F
2 + 2mv1) (5.9)

+
g
2

V

1 �  � my4

�
f
2 + m(v2 � v1)

�
(5.10)

f
2

V =
1

2

�
bf

2 + F
2 + 2mv1

�
(5.11)

f
2

AV =

�
bf

2
� F

2 + 2m(v1 � v2)
�2

2 ((b + 4)f2 + F 2 � 2mv1 + 4mv2)
(5.12)

f
2

PS = F
2 + (b + 2c)f2

� f
2

V � f
2

AV (5.13)

m
2

PSf
2

PS = m(v3 + mv
2

5) (5.14)

m̂
2

PS ⌧ 0.67 (5.15)

SU(2) ⇠ Sp(2) (5.16)

fPS ⇠

p
Nc (5.17)

hSi 6= 0 (5.18)

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
associated with the modified GMOR relation at NLO can be determined independently from
the measurement of m̂

2

PS
when a proper determination of mf is available. Note that not all

of LECs might be independent. For instance, the linear mass dependence of f̂
2

PS
can fully

be determined from the measurements of f̂
2

V
and f̂

2

AV
.

In order to perform a global fit using the functions in Eq. 5.5 we first prepare the meson
masses and decay constants in the continuum limit by subtracting the discretization effects
W

0

m,M
â and W

0

f,M
â from the original data. We restrict ourselves to the data set considered
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Mesons in NLO EFT

- NLO HLS EFT relates meson masses and decay constants with LECs.

- 5 measurements to determine 10 low-energy constants (LECs).

Table 2. Results of the NLO fits for w0/a.

� w
�

0
/a k̃1 �

2/d.o.f
6.9 1.347(4) �0.896(12) 0.7

7.2 2.047(8) �0.545(10) 0.5

Section 4.2. We have further decided to use the four-plaquette clover for the calculation of
the action density E(t) in which smaller lattice artefacts are expected [78].

3.2 Chiral behavior of the flow scale

It is clearly seen from Fig. 1 that the scales depend on the fermion mass. Such a behavior
can be understood from the chiral expansion for the action density E(t) smoothed by the
gradient flow at positive flow time t [81]. Of course, from the point of view of an effective
field theory, it is assumed that the square root of the flow scale t0 is much smaller than
the Compton wavelength of the pseudoscalar meson. Using the tree level relation for the
pseudoscalar mass mPS and the fermion mass mf at the leading order (LO) in the chiral
expansion, m

2

PS
= 2Bmf , we find the next-to-the-leading-order (NLO) result for w0 [81]

w
NLO

0 (m2

PS) = w
�

0

✓
1 + k1

m
2

PS

(4⇡fPS)2

◆
, (3.5)

where w
�

0
and fPS are the GF scale defined above and the pseudoscalar decay constant in

the massless limit. For the numerical fits we consider

w
NLO

0 (m2

PS)/a = w
�

0
/a(1 + k̃1m̂

2

PS), (3.6)

where k̃1 and w
�

0
/a are free dimensionless parameters. Using the hatted notation introduced

above, we define the pseudoscalar mass in units of w0, i.e. m̂PS = w0 mPS. Note that in
principle it should be expanded in terms of w

�

0
mPS as the decay constant fPS in Eq. 3.5

is measured in the chiral limit. To our NLO expression, however, it is not harmful to
use w0 measured at given fermion mass since the difference only contributes to the higher
order terms in the chiral expansion. In practice, it is also convenient to use w0 which does
not involve any extrapolation, but required for w

�

0
. The measurement of mPS/a from the

dynamical ensembles in Table 1 will extensively be discussed in Section 4 and Appendix B,
while the numerical results are presented in Table 5. Throughout this section, we simply
borrow the results without going into the details.

For two values of the lattice coupling, � = 6.9 and 7.2, we performed the NLO fits to
the lattice data for w0 in Table 1, where only the five lightest ensembles are used. The
fit results are presented in Fig. 2, where the resulting values of the low-energy constants
are reported in Table 2. We have reasonable values of �

2/d.o.f., reflecting the fact that
the chiral perturbation theory for w0 well describes the data. Note that the linear mass
dependence of w0/a ceases at around m̂

2

PS
⇠ 0.4. As we will see, this is roughly the same

– 9 –

- Using the LO mass relations & linearization

f̂
2,�

M
L
0

f,M
W

0

f,M
�
2
/d.o.f

PS 0.00618(28)(33) 3.01(21)(33) �0.00135(29)(19) 1.6

V 0.0296(15)(8) 0.51(9)(6) 0.0004(16)(8) 1.0

AV 0.032(7)(2) 0.17(35)(14) 0.012(8)(2) 1.1

m̂
2,�

M
L
0

m,M
W

0

m,M
�
2
/d.o.f

V 0.404(13)(9) 2.18(10)(7) �0.220(15)(12) 0.9

T 0.418(18)(2) 2.08(12)(17) �0.229(22)(30) 0.8

AV 1.07(13)(2) 1.37(32)(7) 0.04(13)(2) 0.8

AT 1.08(13)(8) 1.49(34)(16) �0.08(13)(13) 2.4

S 1.16(12)(12) 0.85(21)(20) �0.08(14)(16) 1.8

Table 7. Fit results of the continuum and massless extrapolations for masses squared and decay
constants squared of mesons in the dynamical simulations. The low-energy constants are defined
in Eqs. 4.14 and 4.15.

Along with the continuum extrapolations of the data obtained from dynamical simulation
discussed in previous sections, these limitations no longer introduce any critical issues. A
more prominent difficulty was the stability of the global fit due to a large parameter space
and a limited number of observables. Note that we would have one more unknown LEC, the
critical bare fermion mass m

c

0
, if we use the bare mass m0 for the fermion mass in the EFT.

A better way to determine the LECs might be to consider a more sophisticated definition of
the fermion mass such as the one calculated via partially conserved axial current (PCAC).
In order to use the PCAC fermion mass properly, however, we have to carry out a more
involved computation of renomalization factors associated with the pseudoscalar operators
which is beyond the scope of this work.

Following the prescription discussed in Section 4.2, we instead consider the pseudoscalar
mass squared which is linear in the fermion mass at the LO EFT, m

2

PS
= 2Bmf . As shown

in Fig. 5, the numerical results support this relation over the small mass region of m̂
2

PS
. 0.4.

Based on the observation of the linear behaviours of the meson masses and decay constants
on m̂

2

PS
for the mass range considered, we further expand NLO expressions reported in Ref.

[55] and keep only the linear terms. The measured dimensionful quantities in units of w0

are understood as before. Up to O(m̂4

PS
), we find

m̂
2

V =
g
2

V
(bf̂2 + F̂

2)

4(1 + )
+

2v̂1( + 1) � ŷ3(bf̂2 + F̂
2)

4( + 1)2
g
2

Vm̂
2

PS, (5.1)

m̂
2

AV =
(b + 4)f̂2 + F̂

2

4(1 � )
g
2

V +

⇣
(b + 4)f̂2 + F̂

2

⌘
ŷ4 � 2(1 � )(v̂1 � 2v̂2)

4(1 � )2
g
2

Vm̂
2

PS, (5.2)

f̂
2

V =
1

2
(bf̂2 + F̂

2) + v̂1m̂
2

PS, (5.3)

f̂
2

AV =
(F̂ 2

� bf̂
2)2

2((b + 4)f̂2 + F̂ 2)
�

((3b + 8)v̂1 � 4(b + 2)v̂2)f̂2 + F̂
2
v̂1

((b + 4)f̂2 + F̂ 2)2
(F̂ 2

� bf̂
2)m̂2

PS, (5.4)

f̂
2

PS = F̂
2 + (b + 2c)f̂2

� f̂
2

V � f̂
2

AV , (5.5)
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Global fit: masses
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Global fit: decay constants
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Linear mass dependence of         is 
better constrained by the HLS EFT.

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
associated with the modified GMOR relation at NLO can be determined independently from
the measurement of m̂

2

PS
when a proper determination of mf is available. Note that not all

of LECs might be independent. For instance, the linear mass dependence of f̂
2

PS
can fully

be determined from the measurements of f̂
2

V
and f̂

2

AV
.

In order to perform a global fit using the functions in Eq. 5.5 we first prepare the meson
masses and decay constants in the continuum limit by subtracting the discretization effects
W

0

m,M
â and W

0

f,M
â from the original data. We restrict ourselves to the data set considered

for the linear fit of f̂
2

PS
, namely m̂

2

PS
. 0.4 and â . 1. Furthermore, we constrain the fits

by implementing the following conditions which are the consequences of the unitarity [55]

1 >  + m̂
2

PSŷ4,

�1 <  + m̂
2

PSŷ3,

0 < bf̂
2 + F̂

2 + 2m̂
2

PSv̂1,

0 < 2 + b + c + (b + 4c)
f̂
2

F̂ 2
� 2m̂

2

PSv̂1, (5.7)

0 < b

⇣
(c + 1)f̂2 + F̂

2
� 2m̂
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PSv̂1 + 2m̂
2

PSv̂2

⌘
+

+c
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4f̂
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2
� 2m̂
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⌘
�

m̂
4

PS
v̂
2
2

f̂2
+ F̂

2
� 2m̂

2

PSv̂1.

In Figs. 11 and 12 we present the continuum values of the masses and decay constants
along with the results of the global fits, denoted by blue bands, obtained through the
standard �

2-minimization. The linear functions in Eq. 5.5 well describe the data with
�
2
/d.o.f ⇠ 0.4. However, we found that the LECs are not well constrained. To see this, we

present the histograms of fit results for 200 resampled data by the means of bootstrapping
in Appendix C, in particular for the LO LECs in Fig. 21 and for the NLO LECs in Fig. 22,
respectively. As seen in the figures, some fit values are not well distributed around the
central values and raise long tails. An interesting observation is that the samples in the tail
can easily be accommodated to the vicinity of the central values by providing appropriate
constraints without changing the �

2
/d.o.f much. Such a result presumably indicates that

there are some local minima in the parameter space whose minimum values are very close
to the one of the actual global minimum. As a result, without knowing further information
on the LECs and/or having much larger statistics, it would be difficult to narrow down the
location of the global minimum.

Nevertheless, the fact that the EFT results well fit the masses and decay constants may
indicate that the physical observables, specific combinations of the LECs, are insensitive to
the location of the nearly degenerate minima in the parameter space. Therefore, it would be
worth to calculate other physical quantities using the resulting fit parameters. One of the
most interesting quantities is the vector-pseudoscalar-pseudoscalar coupling gV PP whose
NLO EFT expression can be found in [55]. In the massless limit, we have

g
�

VPP
=

gV(b + 2)(2f̂
2 + F̂

2)(bf̂2 + F̂
2)

((b + 4)f̂2 + F̂ 2)((b + (b + 4)c)f̂2 + (b + c + 1)F̂ 2)
p

1 + 
. (5.8)
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V-PS-PS coupling constant from EFT

- (tree-level) HLS EFT predicts

- V-PS-PS coupling constant in the massless limit: 
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f̂
2,�

M
L
0

f,M
m̂

2,�

M
L
0

m,M

PS 0.00617(28)(36) 3.02(22)(35)

V 0.0291(18)(11) 0.45(16)(14) 0.400(16)(10) 2.16(15)(9)

AV 0.039(7)(2) �0.82(15)(8) 1.07(19)(8) 1.42(6)(3)

Table 8. Coefficients in Eqs. 4.14 and 4.15 determined by using the results of a global fit.

In Fig. 23, we present the histogram of the coupling which shows a nice gaussian distribution
with the estimated value of g

�

VPP
= 6.0(4)(2).

To make a comparison with the results obtained individually from the linear fits to the
masses and decay constants in Section 4.3, we also calculate the relevant coefficients in Eqs.
4.14 and 4.15 by using the results of the global fit. We present the results in Table 8: they
are widely consistent with the ones in Table 7 except L

0

f,AV
which is now highly constrained

by the NLO EFT as in Eq. 5.5.
There are a few limitations in our attempt to fit the data using the linearized version

of the HLS EFT. First of all, it turns out that the fermion masses are not small enough
to make the linearization to be reliable without assumptions for cancellations of the higher
order corrections by the new terms in N2LO EFT. The most sensitive one appears in the
EFT formula for the vector meson mass, which requires |y3m

2

PS
| ⌧ |1 + |. From our

results of the global fit we find m
2

PS
⌧ 0.67, where the corrections from higher order

terms are marginally compatible with the statatical uncertainties only in the case of the
lightest emsemble. Secondly, the vector mesons are stable. Finally, the coupling gV which
is closely related to gVPP turns out to be not small, which makes the validity of the EFT
to be questionable. Some of the questions on the validity of the EFT can be answered
by decreasing the fermion mass below at which 2mPS . mV is satisfied, while others by
increasing the number of colors in the Sp(2N) gauge theory.

5.2 GMOR relation and Weinberg sum rules

Besides the linear mass dependences of the meson masses and decay constants discussed in
the previous section, there are several consequences of the HLS EFT which can be confirmed
from the numerical data. If we first restrict our attention to the pseudoscalar sector, we
have the GMOR relation whose NLO expression is given by

m
2

PSf
2

PS = mf (v
3 + mfv

2

5), (5.9)

where v and v5 are dimesionful low-enery constants. However, as noted in Section 4.2, it
is not appropriate to fully confirm the GMOR relation in the absence of the renormalized
fermion mass. In particular, we are not able to determine the LECs v and v5. Nevertheless,
we might still illustrate the relation in the continuum-extrapolated data by substituting
m

2

PS
for mf as we did throughout this work. In Fig. 13 we plot the numerical results of

m̂
2

PS
f̂
2

PS
with respect to m̂

2

PS
.

Going beyond the pseudoscalar sector, the first nontrivial result of the NLO EFT
with some reasonable assumptions for the truncation of operators is that the sum of the
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Limitations of NLO EFT

- V-PS-PS coupling is as large as that in QCD.

- Linearization of the EFT mass relations could be questionable over 
the mass range considered without further assumption of cancellation 
from NNLO corrections. In particular, 
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NNLO corrections become compatible with stat. error  only for the 
lightest ensemble.

numerically we found

Figure 11. Decay constants in the continuum limit after subtracting lattice artefacts due to a
finite lattice spacing. The global fit results are denoted by blue solid bands whose widths indicate
the statistical errors.

where the dimesionful LECs are normalized by w0 and part of them absorb the coefficient
2B̂ = 2Bw0 of the LO relation for m̂

2

PS

f̂ = fw0, F̂ = Fw0, ŷ3 =
y3

2B̂w0

, ŷ4 =
y4

2B̂w0

, v̂1 =
v1w0

2B̂
, v̂2 =

v2w0

2B̂
. (5.6)

m̂
2

V =
g
2

V
(bf̂2 + F̂

2)

4(1 + )
+

2v̂1( + 1) � ŷ3(bf̂2 + F̂
2)

4( + 1)2
g
2

Vm̂
2

PS + O(m̂4

⇡), (5.7)

m̂
2

PS ⌧ 0.67 (5.8)

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
associated with the modified GMOR relation at NLO can be determined independently from
the measurement of m̂

2

PS
when a proper determination of mf is available. Note that not all

of LECs might be independent. For instance, the linear mass dependence of f̂
2

PS
can fully

be determined from the measurements of f̂
2

V
and f̂

2

AV
.

In order to perform a global fit using the functions in Eq. 5.5 we first prepare the meson
masses and decay constants in the continuum limit by subtracting the discretization effects
W

0

m,M
â and W

0

f,M
â from the original data. We restrict ourselves to the data set considered
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Figure 11. Decay constants in the continuum limit after subtracting lattice artefacts due to a
finite lattice spacing. The global fit results are denoted by blue solid bands whose widths indicate
the statistical errors.

where the dimesionful LECs are normalized by w0 and part of them absorb the coefficient
2B̂ = 2Bw0 of the LO relation for m̂

2

PS

f̂ = fw0, F̂ = Fw0, ŷ3 =
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In order to perform a global fit using the functions in Eq. 5.5 we first prepare the meson
masses and decay constants in the continuum limit by subtracting the discretization effects
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Figure 17. Comparing the ratios of the vector mass and pseudoscalar decay constant mV/
p

2fPS

in various lattice gauge theories with two fundamental Dirac flavors. Purple, red, green and blue
colours are for SU(2) [40], SU(3) [97], SU(4) [96] and Sp(4) gauge groups , respectively. The black
circle is the experimental value of the coupling in the real world of QCD.

extrapolation leads us to the ratio in the massless and continuum limit of ⇠ 2.1.
The second KSRF prediction relates the on-shell coupling constant associated with the

decay of a vector meson into two pseudoscalars to mV and fPS in the following way

gV PP =
mV

p
2fPS

. (6.2)

As discussed above, the vector meson mass receives small corrections from the non-zero mass
in the linear mass regime, where the corresponding values at the lightest ensemble and in
the massless limit are 5.32(9) and 5.70(19)(14), respectively. In the real world, the mass of ⇢

meson in units of the pion decay constant f⇡ is roughly m⇢/f⇡ ⇠ 5.9. In the literature a few
lattice results for SU(N) gauge theories (other than N = 2) with two fundamental Dirac
fermions are available: for the lightest ensembles considered we found mV/fPS ⇠ 9.3(16) for
SU(2) [40] and ⇠ 5.2(3) for SU(4) [96], respectively. The general trend in SU(N) theories
is that the value of mV/fPS decreases as N increases, which complies with the expectation
of that gV PP decreases in the large N limit. Three values of N are not large enough to
perform a large N extrapolation, though. Near the threshold of mPS/mV ⇠ 0.5, the vector
meson mass we found for Sp(4) lies in between the values for SU(3) and SU(4). A more
reliable way to determine the coupling gVPP might be to use the low-energy EFT discussed
in the previous section: with some limitations we found the coupling in the massless limit,
gVPP = 6.0(4)(2), which is slightly larger than the KSRF value at non-zero fermion mass.
In Fig. 17, we summarize our findings for the coupling compared with the results for other
gauge groups.

We want to close this section by comparing the dynamical results with the quenched
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Large Nc argument:

Kowarabayashi & Suzuki (1966)
Riazuddin & Fayyazuddin (1966)



Summary & outlook

Dynamical calculations of Sp(4) with 2 fund. Dirac flavors: continuum 
& massless extrapolations of meson masses & decay constants for the 
first time. 

Performed a global fit by using (tree-level) NLO EFT based on HLO 
with some limitations. 

(Roughly) consistent with the large Nc argument. 

Larger volume calculations with smaller masses & finer lattices are 
underway.  

Explore the meson spectra of Sp(4) with 3 anti-sym. flavors of 
dynamical Dirac fermions toward partial compositeness.



Thank you for your attention!


