Meson spectrum of *Sp(4)* lattice gauge theory with two fundamental Dirac fermions

Jong-Wan Lee (Pusan Natl. Univ.) *Lattice 2019*

with E. Bennett, M. Piai, B. Lucini (Swansea univ.), D. K. Hong (PNU), C. -J. David Lin (NCTU) &D. Vadacchino (INFN, Pisa)

June 21, 2019 @ Wuhan, China

Novel strong dynamics for BSM

 Various aspects of new physics beyond the standard model (BSM) can be addressed in novel strongly coupled gauge theories.
 <u>Composite Higgs</u> models (pNGB) are particularly interesting.

Kaplan & Georgi (1984)

Solutions for (little) hierarchy problem Quark mass via partial compositeness *Kaplan (1993)*

Novel strong dynamics for BSM

 Various aspects of new physics beyond the standard model (BSM) can be addressed in novel strongly coupled gauge theories.
 <u>Composite Higgs</u> models (pNGB) are particularly interesting.

Kaplan & Georgi (1984)

UV completion

Solutions for (little) hierarchy problem

Quark mass via partial compositeness

Kaplan (1993)

5D Contino, Nomura & Pomarol (2003)

4D Ferretti & Karateev (2014)

UV complete Composite Higgs scenarios

Coset	HC	ψ	χ	$-q_{\chi}/q_{\psi}$	Baryon	Name	Lattice
$\boxed{\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}}$	SO(7)	$5 imes \mathbf{F}$	$6 imes \mathbf{Sp}$	5/6	$\psi \chi \chi$	M1	
	SO(9)			5/12		M2	0-10
	SO(7)	5 × Sp	$6 \times F$	5/6	alala	M3	0000
	SO(9)	0 × 5h	0 × 1	5/3	$\psi\psi\chi$	M4	
$\boxed{\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}}$	$\operatorname{Sp}(4)$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	5/3	$\psi \chi \chi$	M5	\checkmark
$(11(5) (11(2))^2$	SU(4)	5 × A .	$3 \times (\mathbf{F} \ \overline{\mathbf{F}})$	5/3	/3	M6	
$\left \frac{\mathrm{SU}(3)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(3)}{\mathrm{SU}(3)} \right $	SO(1)	$5 \times \mathbf{F}$	$3 \times (\mathbf{Sn} \ \overline{\mathbf{Sn}})$	5/12	$\psi\chi\chi$	M7	V
		0 / 1	0 × (bp, bp)	0/12		1011	
$\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	Sp(4)	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	1/3		M8	
	$\left SO(11) \right $	$4 \times \mathbf{Sp}$	$6 imes \mathbf{F}$	8/3	$\psi\psi\chi$	M9	
$SII(4)^2$ $SII(6)$	SO(10)	$4 \times (\mathbf{Sp} \ \overline{\mathbf{Sp}})$	$6 \times \mathbf{F}$	8/3	3000	M10	
$\left \frac{\mathrm{SU}(4)}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SU}(6)} \right $	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$\frac{0}{2}$	$\psi\psi\chi$	M11	
			· · · · · · · · · · · · · · · · · · ·	-/0			V
$\left \frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}\right $	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}_2})$	4/9	$\psi\psi\chi$	M12	

Global symmetry: minimal, but large enough to take account for both EW & Color cosets

Gauge symmetry: Asymptotically free & non-conformal

Cacciapaglia, Ferretti, Flacke & Serodio (2019) arXiv:1902.06890

Why Sp(4)? - SU(4)/Sp(4) CH - UV realization of SO(6)/SO(5) CH model from Sp(2N) gauge theory Barnard, Gherghetta & Ray (2014) Global symmetry 2 Dirac flavors SU(4)/Sp(4) $\sim SO(6)/SO(5)$ in fund. rep. SM EW $SU(2)_L \times U(1)_Y \subset Sp(4)$ <u>4 of 5 PNGBs: Higgs doublets</u>

- N=2 to make it minimal & near conformal

More on Sp(2N)

- Both light composite Higgs & top partner based on Sp(6) gauge theory with multi-reps *Gertov, Nelson, Perko, Walker (2019)*
- SIMP dark matter: 3-2 number-changing scattering process

Hochberg et al (2015) Hansen, Langable, Sannino (2015)

 Casimir scaling: Universality in pure SU(N), SO(N), Sp(2N) Yang-Mills

$$\frac{m_{0^{++}}^2}{\sigma} = \eta \frac{C_2(A)}{C_2(F)}$$

Hong et al (2017)

Talk by Jack @ 14:40, Friday

Lattice details

- Standard (unimproved) Wilson gauge & fermion actions

$$S = \beta \sum_{x} \sum_{\mu < \nu} \left(1 - \frac{1}{4} \operatorname{Re} \operatorname{Tr} \mathcal{P}_{\mu\nu} \right) + a^{3} \sum_{x} \bar{\psi}(x) \left(4 + am_{0} \right) \psi(x)$$
$$- \frac{1}{2} a^{3} \sum_{x,\mu} \bar{\psi}(x) \left((1 - \gamma_{\mu}) U_{\mu}(x) \psi(x + \hat{\mu}) + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x - \hat{\mu}) \psi(x - \hat{\mu}) \right)$$
where $\beta = 4N/g^{2}$ and the plaquette is
$$\mathcal{P}_{\mu\nu}(x) = U_{\mu}(x) U_{\nu}(x + \hat{\mu}) U_{\mu}^{\dagger}(x + \hat{\nu}) U_{\nu}^{\dagger}(x)$$

The link variables $U_{\mu}(x)$ are elements of Sp(4) gauge group.

Bennett et al (2018)

- Gauge configurations are generated by using hybrid Monte Carlo algorithm implemented in the modified HiRep code. *Del Debbio, Patella, Pica (2010)*
- Periodic B.C. for spacial directions & anti-periodic B.C. for temporal direction

Ensembles

	C T				17 173			D 11
	$f_{\rm PS} L$	$m_{\rm PS} L$	δ_{traj}	N _{configs}	$N_t \times N_s^3$	am_0	β	Ensemble
	2.290(10)	13.351(17)	24	100	32×16^3	-0.85	6.9	DB1M1
	2.079(17)	11.845(19)	24	100	32×16^3	-0.87	6.9	DB1M2
Weak coupling regime	1.836(13)	10.042(23)	20	100	32×16^3	-0.89	6.9	DB1M3
<u></u>	1.683(18)	9.00(3)	20	100	32×16^3	-0.9	6.9	DB1M4
$\beta \ge 6.8$	1.509(10)	7.701(16)	20	100	32×16^3	-0.91	6.9	DB1M5
$P \sim 0.0$	1.977(13)	9.28(26)	28	80	32×24^3	-0.92	6.9	DB1M6
Bennett et al (2018)	1.835(14)	8.13(3)	12	62	32×24^3	-0.924	6.9	DB1M7
015 015 015 015 0	1.645(17)	8.752(28)	20	100	36×20^3	-0.835	7.05	DB2M1
	1.609(13)	7.946(26)	24	100	36×24^3	-0.85	7.05	DB2M2
Negligible FV effects	1.958(12)	8.732(27)	20	102	36×32^3	-0.857	7.05	DB2M3
	1.590(14)	11.043(18)	20	100	36×16^3	-0.7	7.2	DB3M1
$m_{-2} T > 7 F$	1.449(13)	9.437(21)	20	100	36×16^3	-0.73	7.2	DB3M2
$m_{\rm PSL} \lesssim 1.3$	1.235(10)	7.521(21)	20	100	36×16^3	-0.76	7.2	DB3M3
Lee et al (Lattice 2018)	1.743(8)	10.133(18)	20	100	36×24^3	-0.77	7.2	DB3M4
100 of al (14100 1010)	1.598(9)	8.884(21)	12	96	36×24^3	-0.78	7.2	DB3M5
	1.448(9)	7.568(22)	20	100	36×24^3	-0.79	7.2	DB3M6
Low-energy EFT	1.611(8)	8.048(19)	12	195	36×28^3	-0.794	7.2	DB3M7
	1.714(10)	8.102(24)	12	150	40×32^3	-0.799	7.2	DB3M8
$f_{\rm PS}L > 1$	1.745(7)	10.208(15)	12	150	48×32^3	-0.72	7.4	DB4M1
	1.600(9)	8.663(20)	12	150	48×32^3	-0.73	7.4	DB4M2
	1.270(9)	7.835(23)	12	100	48×24^3	-0.69	7.5	DB5M1

Remarks on the lattice spacing & fermion mass

- Scale setting: Luscher's gradient flow scales Luscher (2010) Luscher & Weise (2011)
 - $\mathcal{W}(t) \equiv t \frac{\mathrm{d}\mathcal{E}(t)}{\mathrm{d}t} \text{ Borsanyi et al (2012)} \qquad E(t,x) = -\frac{1}{2} \mathrm{tr}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$ $\mathcal{W}(t)|_{t=w_0^2} = \mathcal{W}_0 = 0.35 \qquad t^2 \langle E(t) \rangle \equiv \mathcal{E}$
- Dimensionful quantities: $\hat{m}_M \equiv m_M w_0 = m_M^{\text{lat}} w_0^{\text{lat}} \& \hat{f}_M \equiv f_M w_0 = f_M^{\text{lat}} w_0^{\text{lat}}$

- Fermion mass is replaced by pseudoscalar mass squared

$$m_{\rm PS}^2 = 2Bm_f$$

Observables: flavored mesons

- Interpolating operators of flavored spin-0 and spin-1 mesons ($i \neq j$)

Label	Interpolating operator (\mathcal{O}_M)	Meson	J^P
PS	$\overline{Q^i}\gamma_5Q^j$	π	0-
S	$\overline{Q^i}Q^j$	a_0	0+
V	$\overline{Q^i}\gamma_\mu Q^j$	ρ	1-
Т	$\overline{Q^i}\gamma_0\gamma_\mu Q^j$	ρ	1-
AV	$\overline{Q^i}\gamma_5\gamma_\mu Q^j$	a_1	1+
AT	$\overline{Q^i}\gamma_5\gamma_0\gamma_\mu Q^j$	b_1	1+

- Masses and decay constants (only for PS, V and AV) are extracted from two-point correlation functions as usual.
- Decay constants are renormalized by using the one-loop perturbative matching with tad-pole improvement. QCD analog of f_{π} in our convention is $f_{\pi} \simeq 93 \,\text{MeV}$.

Masses: vector and tensor

Masses: scalar, axial-vetor and axial-tensor

Continuum and massless extrapolation

- (tree-level) Wilson-like chiral perturbation theory at NLO

$$\hat{f}_{PS}^{NLO} = \hat{f}^{\chi} \left(1 + \hat{b}_f^{\chi} \hat{m}_{PS}^2 \right) + \hat{W}_f^{\chi} \hat{a} \qquad \hat{a} \equiv a/w_0 = 1/w_0^{lat}$$

- Power counting

$$\frac{p^2}{\Lambda_{\chi}^2} < \frac{m_{\rm PS}^2}{\Lambda_{\chi}^2} \sim a\Lambda_{\chi} < 1$$

Over the small mass region

$$\frac{p^2}{\Lambda_{\chi}^2}$$
: 0.06 ~ 0.12, $\frac{m_{\rm PS}^2}{\Lambda_{\chi}^2}$: 0.13 ~ 0.2, and $a\Lambda_{\chi}$: 0.6 ~ 1.4

- Exclude coarse lattices from the fits

 $a\Lambda_\chi \lesssim 1.1$

Ensembles used for continuum & massless extrapolations

Continuum & massless extrapolations: Decay constants

Fit function:

 $\hat{f}_{M}^{2,\text{NLO}} = \hat{f}_{M}^{2,\chi} \left(1 + L_{f,M}^{0} \hat{m}_{\text{PS}}^{2} \right) + W_{f,M}^{0} \hat{a}$ $\hat{m}_{M}^{2,\text{NLO}} = \hat{m}_{M}^{2,\chi} \left(1 + L_{m,M}^{0} \hat{m}_{\text{PS}}^{2} \right) + W_{m,M}^{0} \hat{a}$

Continuum & massless extrapolations: Masses

Mesons in NLO EFT

- NLO HLS EFT relates meson masses and decay constants with LECs.
- Using the LO mass relations & linearization $m_{\rm PS}^2 = 2Bm_f$

$$\begin{split} \hat{m}_{\rm V}^2 &= \frac{g_{\rm V}^2 (b\hat{f}^2 + \hat{F}^2)}{4(1+\kappa)} + \frac{2\hat{v}_1(\kappa+1) - \hat{y}_3(b\hat{f}^2 + \hat{F}^2)}{4(\kappa+1)^2} g_{\rm V}^2 \hat{m}_{\rm PS}^2, \\ \hat{m}_{\rm AV}^2 &= \frac{(b+4)\hat{f}^2 + \hat{F}^2}{4(1-\kappa)} g_{\rm V}^2 + \frac{\left((b+4)\hat{f}^2 + \hat{F}^2\right)\hat{y}_4 - 2(1-\kappa)(\hat{v}_1 - 2\hat{v}_2)}{4(1-\kappa)^2} g_{\rm V}^2 \hat{m}_{\rm PS}^2, \\ \hat{f}_{\rm V}^2 &= \frac{1}{2}(b\hat{f}^2 + \hat{F}^2) + \hat{v}_1\hat{m}_{\rm PS}^2, \\ \hat{f}_{\rm AV}^2 &= \frac{(\hat{F}^2 - b\hat{f}^2)^2}{2((b+4)\hat{f}^2 + \hat{F}^2)} - \frac{((3b+8)\hat{v}_1 - 4(b+2)\hat{v}_2)\hat{f}^2 + \hat{F}^2\hat{v}_1}{((b+4)\hat{f}^2 + \hat{F}^2)^2} (\hat{F}^2 - b\hat{f}^2)\hat{m}_{\rm PS}^2 \\ \hat{f}_{\rm PS}^2 &= \hat{F}^2 + (b+2c)\hat{f}^2 - \hat{f}_{\rm V}^2 - \hat{f}_{AV}^2, \end{split}$$

- 5 measurements to determine 10 low-energy constants (LECs).

Consistent with the results of linear extrapolations

Global fit: decay constants

Consistent with the results of linear extrapolations

Linear mass dependence of \hat{f}_{AV}^2 is better constrained by the HLS EFT.

V-PS-PS coupling constant from EFT

- (tree-level) HLS EFT predicts

$$g_{\rm VPP}^{\chi} = \frac{g_{\rm V}(b+2)(2\hat{f}^2 + \hat{F}^2)(b\hat{f}^2 + \hat{F}^2)}{((b+4)\hat{f}^2 + \hat{F}^2)((b+(b+4)c)\hat{f}^2 + (b+c+1)\hat{F}^2)\sqrt{1+\kappa}}$$

- V-PS-PS coupling constant in the massless limit: $g_{\text{VPP}}^{\chi} = 6.0(4)(2)$

Limitations of NLO EFT

- Vector meson is stable.
- V-PS-PS coupling is as large as that in QCD.
- Linearization of the EFT mass relations could be questionable over the mass range considered without further assumption of cancellation from NNLO corrections. In particular,

$$m_{\rm V}^2 = \frac{1}{4(1+\kappa+my_3)}g_V^2(bf^2+F^2+2mv_1)$$

$$\hat{m}_{\rm V}^2 = \frac{g_{\rm V}^2(b\hat{f}^2+\hat{F}^2)}{4(1+\kappa)} + \frac{2\hat{v}_1(\kappa+1)-\hat{y}_3(b\hat{f}^2+\hat{F}^2)}{4(\kappa+1)^2}g_{\rm V}^2\hat{m}_{\rm PS}^2 + \mathcal{O}(\hat{m}_{\pi}^4)$$

requires $|y_3 m_{\rm PS}^2| \ll |1 + \kappa|$ numerically we found $\hat{m}_{\rm PS}^2 \ll 0.67$

NNLO corrections become compatible with stat. error only for the lightest ensemble.

Summary & outlook

- Dynamical calculations of Sp(4) with 2 fund. Dirac flavors: continuum & massless extrapolations of meson masses & decay constants for the first time.
- Performed a global fit by using (tree-level) NLO EFT based on HLO with some limitations.
- (Roughly) consistent with the large Nc argument.
- Larger volume calculations with smaller masses & finer lattices are underway.
- Explore the meson spectra of Sp(4) with 3 anti-sym. flavors of dynamical Dirac fermions toward partial compositeness.

Thank you for your attention!