
Stealth dark matter and gravitational waves

David Schaich (University of Liverpool)

Lattice 2019, 19 June

Work in progress with the Lattice Strong Dynamics Collaboration

Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn

Bern Andrew Gasbarro

Boston Rich Brower, Dean Howarth, Claudio Rebbi

Colorado Ethan Neil, Oliver Witzel

UC Davis Joseph Kiskis

Livermore Pavlos Vranas

Liverpool **DS**

Nvidia Evan Weinberg

Oregon Graham Kribs

RIKEN Enrico Rinaldi

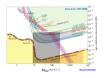
Yale Thomas Appelquist, Kimmy Cushman, George Fleming

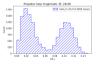
Exploring the range of possible phenomena in strongly coupled field theories

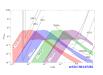
Overview

Stealth dark matter

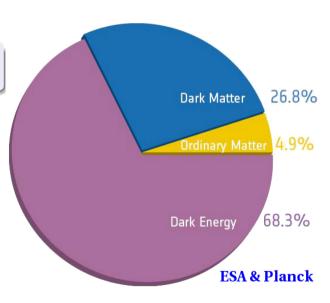
Attractive and viable composite dark matter model


Exploring gravitational waves from first-order transition


Stealth dark matter motivational review


4-flavor SU(4) lattice phase diagram

Gravitational wave prospects



Dark matter

Consistent gravitational evidence from kiloparsec to Gpc scales

$$\frac{\Omega_{\text{dark}}}{\Omega_{\text{ordinary}}} \approx 5 \quad \dots \text{not } 10^5 \text{ or } 10^{-5}$$

— non-gravitational interactions with standard model

Composite dark matter

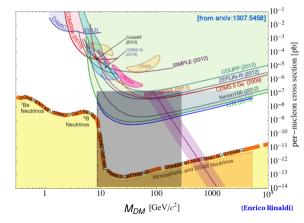
Early universe

Deconfined charged fermions \longrightarrow non-gravitational interactions

Present day

Confined neutral 'dark baryons' --> no experimental detections

SU(4) dark sector with four moderately heavy fundamental fermions Lightest scalar 'baryon' is stable dark matter candidate


Direct detection

Symmetries

---- electric polarizability is leading interaction

Collider searches Charged 'meson' Drell-Yan

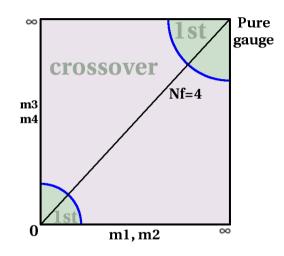
rules out shaded region

Gravitational waves

Gravitational waves

First-order confinement transition ->> stochastic background

⇒ Lattice studies of stealth dark matter phase transition


Phase diagram expectations

Pure-gauge transition is first order

Becomes stronger as N increases

First-order transition persists for sufficiently heavy fermions

How heavy is sufficient for SU(4)?

Using $N_F = 4$ unrooted staggered fermions gauge action with both fundamental & adjoint plaquette terms

The lattice phase diagram game

Fermion masses m = 0.05, 0.067, 0.1, 0.2 (and pure gauge)

 \times

Temporal extents $N_T = 4$, 6, 8, 12

 \times

Aspect ratios $L/N_T=2$, 3, 4, 6, 8

 \times

Scan coupling β_F to sweep temperatures high \longrightarrow low and low \longrightarrow high

= 985 ensembles and counting

[5,000–50,000 MD time units per ensemble]

The lattice phase diagram game

Fermion masses m = 0.05, 0.067, 0.1, 0.2 (and pure gauge)

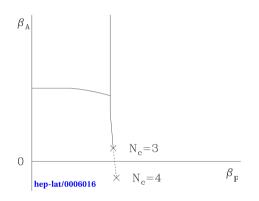
 \times

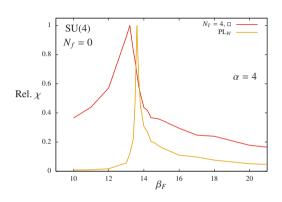
Temporal extents $N_T = 4$, 6, 8, 12

 \times

Aspect ratios $L/N_T = 2$, 3, 4, 6, 8

×

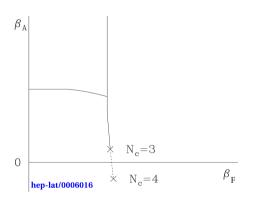


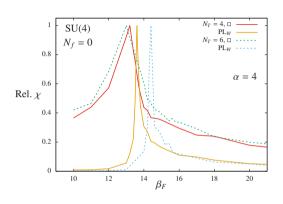

Scan coupling β_F to sweep temperatures high \longrightarrow low and low \longrightarrow high

= 985 ensembles and counting

[5,000–50,000 MD time units per ensemble]

Pure gauge checks: Bulk and thermal transitions

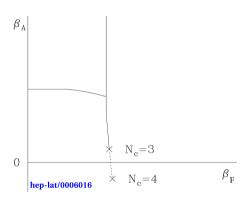


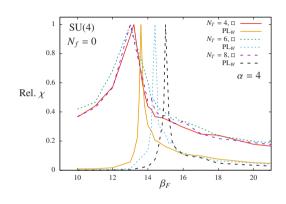


Try to avoid bulk transition for small $N_T \longrightarrow \text{use } \beta_A = -\beta_F/4$

Still need $N_T > 4$ for clear separation between bulk & thermal transitions

Pure gauge checks: Bulk and thermal transitions

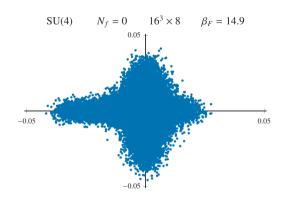


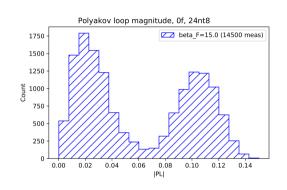


Try to avoid bulk transition for small $N_T \longrightarrow \text{use } \beta_A = -\beta_F/4$

Still need $N_T > 4$ for clear separation between bulk & thermal transitions

Pure gauge checks: Bulk and thermal transitions

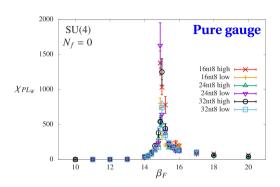


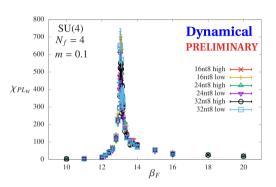


Try to avoid bulk transition for small $N_T \longrightarrow \text{use } \beta_A = -\beta_F/4$

Still need $N_T > 4$ for clear separation between bulk & thermal transitions

Pure gauge checks: Order of thermal transition





Two peaks in Polyakov loop magnitude histogram \longrightarrow first-order transition \checkmark

Hysteresis not clearly visible even in pure-gauge case

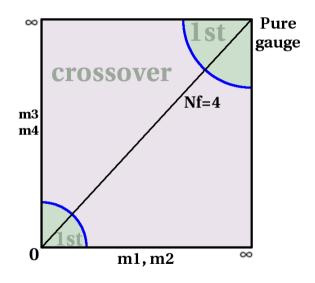
Dynamical results: Still looks first order

Pure-gauge & dynamical susceptibilities show same behavior

 \longrightarrow evidence for first-order transition with $m \ge 0.1$

Fundamental fermions explicitly break $Z_N \longrightarrow don't$ see two peaks in histograms

What does $m \ge 0.1$ mean?


How heavy is sufficient for SU(4)?

Spectrum measurements

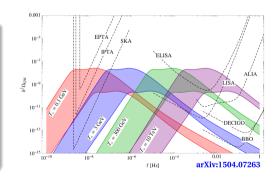
Zero-temp. $24^3 \times 48$ ensembles around each transition

$$\longrightarrow M_P/M_V = 0.80(3)$$
 for $m = 0.1$

$$M_P/M_V = 0.91(1)$$
 for $m = 0.2$

Previous work considered $0.55 \le M_P/M_V \le 0.77 \longrightarrow \text{now adding } m = 0.05$

From first-order transition to gravitational wave signal


First-order transition \longrightarrow gravitational wave background will be produced

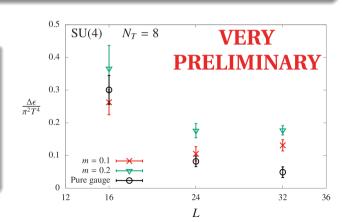
How do we predict its features?

Four key parameters

Transition temperature $T_* \lesssim T_c$ Vacuum energy fraction from **latent heat**Bubble nucleation rate (transition duration)

Bubble wall speed

Next step: Latent heat $\Delta \epsilon$


First-order transition \longrightarrow gravitational wave background will be produced

How do we predict its features?

Vacuum energy fraction

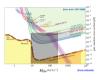
$$lpha pprox rac{\mathsf{30}}{\mathsf{4N}(\mathsf{N}^2-\mathsf{1})} rac{\Delta\epsilon}{\pi^2 T_*^4}$$

Latent heat $\Delta \epsilon$ is change in energy density at transition

Recapitulation and outlook

Stealth dark matter

Attractive and viable composite dark matter model


Exploring gravitational waves from first-order transition

Gravitational wave observatories will add to constraints from collider searches and direct detection experiments

SU(4) confinement transition appears first order for $M_P/M_V \gtrsim 0.8$, smaller masses underway

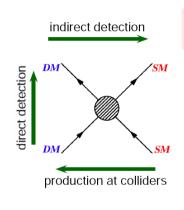
Next steps are latent heat, etc., for signal prediction

Thank you!

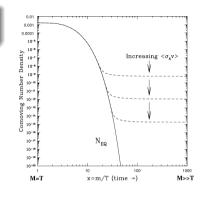
Lattice Strong Dynamics Collaboration

Especially Graham Kribs, Ethan Neil, Enrico Rinaldi

Funding and computing resources


UK Research and Innovation

Backup: Thermal freeze-out for relic density



Requires non-gravitational DM–SM interactions

 $\mathsf{DM} \longleftrightarrow \mathsf{SM} \ \text{for} \ T \gtrsim M_{DM}$

 $\mathsf{DM} \longrightarrow \mathsf{SM} \ \text{ for } \ T \lesssim M_{DM} \\ \Longrightarrow \mathsf{rapid} \ \mathsf{depletion} \ \mathsf{of} \ \Omega_{DM}$

 $\begin{array}{c} \text{Hubble expansion} \\ \Longrightarrow \text{dilution} \longrightarrow \text{freeze-out} \end{array}$

2
$$ightarrow$$
 2 scattering relates coupling and mass, 200 $lpha \sim \frac{M_{DM}}{100~{
m GeV}}$

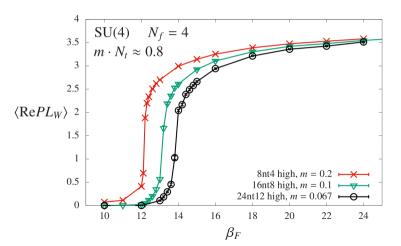
Strong $\alpha \sim$ 16 \longrightarrow 'natural' $M_{DM} \sim$ 300 TeV

(smaller for $2 \rightarrow n$ scattering)

Backup: Two roads to natural asymmetric dark matter

Relate dark matter relic density to baryon asymmetry

$$\Omega_D pprox 5\Omega_B \ \Longrightarrow M_D n_D pprox 5 M_B n_B$$


$$n_D \sim n_B \implies M_D \sim 5 M_B \approx 5 \text{ GeV}$$
 High-dim. interactions relate baryon# and DM# violation

$$M_D \gg M_B \implies n_B \gg n_D \sim \exp{[-M_D/T_s]} \qquad T_s \sim 200 \text{ GeV}$$
 EW sphaleron processes above T_s distribute asymmetries

Both require non-gravitational interactions with known particles

Backup: Confirming thermal transition

Fix $m \cdot N_T \approx 0.8$ \longrightarrow transition moves to $\beta_F \to \infty$ as $N_T \to \infty$ \checkmark

