SU(3) gauge system with twelve fundamental flavors

Anna Hasenfratz1, Claudio Rebbi2, and Oliver Witzel1

1Department of Physics, University of Colorado, Boulder
2Department of Physics and Center for Computational Science, Boston University

GRADIENT FLOW STEP SCALING FUNCTION [1,2]

Gradient flow step scaling function

\[\beta_{g_2}(L) = \frac{g_2(L) - g_2(0)}{g_2(0)} \]

with \(s = 2 \), using the renormalized GF coupling

\[g_2(L) = \frac{32L^2}{N(N-1)(N+2)} (E(0)) \]

- The flow time is set by the volume: \(cL = sL \)
- C: two-loop normalization \(C(L) \) [6]
- or zero mode correction \(1 + \delta/t(L)^2 \) [5]

Simulation details

- \(\sigma_{\text{K}3}/\text{g} \) code fully optimized for KNL
- Symmetric gauge action
- \(3 \times 4 \) stout smeared Monday domain wall fermions
- \(4 \times 3 \) volumes, \(L = 8, 10, 12, 14, 16, 20, 24, 28, 32 \)
- Antiperiodic BC in all four directions
- Massless: \(\text{am} = 0 \)
- \(L_0 \) grows from 12 to 32 keeping \(\text{am}_{\text{max}} < 10^{-5} \)

Advantages of Domain Wall Fermions

- Preserves full SU(3) \& SU(3) flavor symmetry even at finite gauge coupling
- Effective gauge term generated by fermions and smearing is very small due to Punk-Villain term
 - reduced cut-off effects
 - increased region of perturbative improvement

Gradient flow coupling

- Fully \(O(3) \) Symmam improved set-up
- Symmetric (S) gauge action
 - Zeuthen (Z) flow [6]
- Symmetric (S) operator
- Consistent with different gradient flows
 - Wilson (W), Symmam (S), Zeehnth (Z) [6]
- and/or operators
 - Wilson-plaquette (W), Symmam (S), clover (C)
- Include tree-level normalization [6]

Analysis steps

- Calculate \(\beta_{g_2}(L) \) for all volume pairs at all bare couplings
- Interpolate volume pairs using a 3rd order polynomial in \(g_2^2 \)
- Perform \(L \to \infty \) continuum extrapolation on interpolated \(\beta_{g_2}(L) \)
- Account for systematic effects using the envelope of all

Final result for \(c = 0.250 \)

- \(N_f = 12 \) step scaling function is very small
- Numerical simulations are challenging
- Necessary to consider systematic effects and reduce cut-off effects
 - DWF reduce cut-off effects from gauge fields
 - DWF is fully \(O(3) \) improved
 - Different flows/operators indicate systematic errors
- \(c = 0.250 \) scheme: \(\beta_{g_2} \) at 5.2 \(\leq g_2^2 \leq 6.4 \)
- Similar conclusions for \(c = 0.275, 0.3 \)

CONTINUOUS GRADIENT FLOW \(\beta \) FUNCTION [3]

Continuous \(\beta \) function

\[\beta(g_2) = \frac{dg_2}{d\beta} = -\frac{d^2g_2}{d\beta^2} \]

- \(L/a \to \infty \)
- \(g_2^t \) at fixed \(t/a^2 \)

Analysis steps

- Interpolate \(\beta(g_2, g_2^t) \) vs. \(g_2^2(t/a^2, L/a) \)
 - For fixed \(t \), \(L \), \(g_2 \) extrapolate \(L/a \to \infty \)
 - Table the \(g_2^t \) at 0 continuum limit
 - Improve by combining different operators
 - Investigate systematic effects in fit ranges

Details of analysis

- Finite volume effects are \(O(1/L^2) \)
- Physical volume is fixed at \(L/a \to \infty \) at fixed \(g_2^2 \)
 - Only volumes \(\text{am} = 0 \), chirally symmetric regime
 - Continuum limit extrapolation
 \[\beta(g_2) = \beta(g_2 t/a^2) + \xi (t/a^2)^{1+\nu} + \text{h.o.t.} \]
 - \((t/a^2)^{1+\nu} \) describes leading irrelevant operator
 - Control cut-off effects and infinite volume extrapolation errors by limiting the \(t/a^2 \) range
 - \(\beta(g_2) \): continuum limit continuous \(\beta \) function
 - Independent of operator used to define \(\beta_{g_2} \)

Systematic effects

- Study different operators
- Very fit range in flow time
- Explore different infinite volume extrapolations

Summary

- \(N_f = 12 \) step scaling function is very small
- Numerical simulations are challenging
- Necessary to consider systematic effects and reduce cut-off effects
- DWF reduces cut-off effects from gauge fields
- DWF is fully \(O(3) \) improved
- Different operators indicate systematic errors
- \(c = 0.250 \) scheme: \(\beta_{g_2} \) at 5.2 \(\leq g_2^2 \leq 6.4 \)
- Similar conclusions for \(c = 0.275, 0.3 \)

- Tension with staggered results [9,10], PT predictions [12,13]

References

1. A. Hasenfratz, C. Rebbi, O. Witten, 2710.15278
2. A. Hasenfratz, C. Rebbi, O. Witten, in preparation
3. A. Hasenfratz, O. Witten, in preparation
4. M. Floerchinger, JHEP 2010; 071
5. Z. Folk et al. JHEP 2010; 071
6. Z. Folk et al. JHEP 2010; 071
7. F. Bork et al. PoLLATI 2015; 521
8. A. Barnes, S. Hart, POLE2013; 512
10. Z. Folk et al. PLB 2010; 220
11. P.S. Baker et al. PLB 117 (2013); 690202
12. T. A. Byrnes and D. Swinehart, PRL 2001; 109021
13. C. Monahan and K. Orginos, PRL 2013; 082003
14. Z. Folk et al. JHEP Web-Conf. 1501; 080202

Interpolation in \(g_2^2 \) at fixed \(t/a^2 \)

Final result

- \(L/a \to \infty \) at fixed \(t/a^2, g_2^2 \)

- \(a^2/t \to 0 \) continuum extrapolation

Outlook

- New method, easy-to-generalize, e.g. determination of running anomalous dimensions [15]
- Talk by Ali on Monday on \(N_f = 2 \) flavor QCD
- Continuous \(\beta \) function has significantly reduced uncertainties
- \(a^2/t \) extrapolation is via correlated continuous variable leading to reduced errors
- Aims for quick resumé of existing GF step scaling data

Acknowledgments

Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy, as the RHACCP Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1351225 and ACI-1351226), the University of Colorado Boulder, and Colorado State University, and using the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562 to the Stampede system at TACC through allocation TG-PHY180005. We thank BNL, Bar-Ilan University, Fermilab, Jefferson Lab, the CU Boulder, the NSF, and DOE for providing the facilities essential for carrying out this work.