Proton decay matrix elements with physical quark masses

Yasumichi Aoki\(^{(1)}\), Yoshinobu Kuramashi\(^{(2)}\), Eigo Shintani\(^{(3)}\), Natsuki Tsukamoto\(^{(5)}\)

(1) RIKEN R-CCS, 2: CCS Univ. Tsukuba, 3: Tohoku Univ., * presenter, † till March 2019

Introduction
Proton decay
- smoking gun of new physics, natural in GUT with \(B \) violation
- search underway in underground experiments: SuperKamiokande etc
- next generation experiment planned: HyperKamiokande, DUNE

Proton decay matrix elements on the lattice
- bridge between GUTs and Experiments

Lattice status
- \(N=2+1 \) DWF results exists (1) \(\Rightarrow \alpha \)
- but, extrapolation w/ \(m_{\text{ud}} = 340 \text{ MeV} \)

Loose End
- chiral extrapolation!
- skirnn model suggests drastic decrease as \(m \rightarrow 0 \) (2)

Use of physical point simulation is next turns

Proton decay matrix elements with physical quark masses (Image)

\[\text{statistical note} \]
- \(\sim 100 \) configurations
- for each config
- matrix elements: AMA (5):
 - one exact and
 - 256 sloppy solves
- NPR:
 - single point source

RI/MOM Non perturbative renormalization - operator mixing
- flavor structure (uds) case
- only two operators are independent LL & RL
- no chiral symm. \(\rightarrow \) mixing basis contains (6)

\[Q_{RL} = \left(\frac{|\Phi|^2}{{m_0}^2} \right) \cdot P_{L,R} \]
\[Q_{LL} = \left(\frac{|\Phi|^2}{{m_0}^2} \right) \cdot P_{L,R} \]
\[Q_{(L/R)} = \left(\frac{|\Phi|^2}{{m_0}^2} \right) \cdot P_{L,R} \]

\[\text{Off-diagonal larger than DWF, but, } \sim 1\% \rightarrow \text{treated as negligible below} \]

MSb 2GeV Z factor with RI/SMOM wave function Z
- small SSB & quark mass effect good for physical point ensemble
- \(Z_{\text{MSb}} \) or \(Z_{\text{MSb}} \) with \(Z_{\text{MS}} \) from SF scheme estimate (8)
- A and V vertex from SMOM and SMOMyu schemes (9)

References
(3) [RBC/UKQCD] J.S. Yoo et al, PoS LATTICE2018 187
(9) C. Sturm et al, PRD 80 (2009) 014501