$\mathcal{N} = 1$ Supersymmetric SU(3) Gauge Theory with a Twist

Marc Steinhauser in collaboration with A. Sternbeck, B. Wellegehausen, A. Wipf

Friedrich Schiller University Jena Theoretical Physics Institute

Wuhan, June 19, 2019

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 0/16

Standard model of particle physics

- describes successfully what we observe at $\lesssim \mathcal{O}(10\,\text{TeV})$

Open questions

- Higgs mass
- dark matter
- unification of forces

 \Rightarrow Not complete \Rightarrow More fundamental theory?

Possible solution

Introduce supersymmetry

• ...

Table of content

- **1** $\mathcal{N} = 1$ Super-Yang-Mills Theory (recap)
- 2 SYM on the Lattice (with a Twist)
- 3 Analytical Investigations
- 4 Numerical Investigations

Minimal Supersymmetric Standard Model

· contains a super partner for every particle

[4] https://web2.ph.utexas.edu/~coker2/index.files/supersymmetry.htm

 $\mathcal{N}=1$ SYM with a Twist Marc Steinhauser Wuhan, June 19, 2019 2/16

$\overline{\mathcal{N}} = 1$ Super-Yang-Mills Theory

· contains a super partner for every particle

PARTICLES

SPARTICLES

\Rightarrow important building block of Super-QCD

[4] https://web2.ph.utexas.edu/~coker2/index.files/supersymmetry.htm

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 2/16

$\overline{\mathcal{N}} = 1$ Super-Yang-Mills Theory Fields

- Gauge boson (gluon) $A_{\mu}(x)$ in the adjoint representation
- Super partner (gluino) $\lambda(x)$ is Majorana fermion in the adjoint representation

On-shell Lagrange density

$$\mathcal{L}_{\text{SYM}} = \text{tr}\left(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{i}{2}\bar{\lambda}\not\!\!D\lambda\right)$$

Supersymmetry: Relation between fermionic matter particles and bosonic force particles

$$\delta_{\epsilon} A_{\mu} = \mathrm{i} \bar{\epsilon} \gamma_{\mu} \lambda, \quad \delta_{\epsilon} \lambda = \mathrm{i} \Sigma_{\mu\nu} F^{\mu\nu} \epsilon$$

$\overline{\mathcal{N}} = 1$ Super-Yang-Mills Theory Fields

- Gauge boson (gluon) $A_{\mu}(x)$ in the adjoint representation
- Super partner (gluino) $\lambda(x)$ is Majorana fermion in the adjoint representation

On-shell Lagrange density

$$\mathcal{L}_{\text{SYM}} = \text{tr}\left(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{i}{2}\bar{\lambda}\not{D}\lambda - \frac{m_{\text{g}}}{2}\bar{\lambda}\lambda\right)$$

Supersymmetry: Relation between fermionic matter particles and bosonic force particles

$$\delta_{\epsilon} A_{\mu} = \mathrm{i} \bar{\epsilon} \gamma_{\mu} \lambda, \quad \delta_{\epsilon} \lambda = \mathrm{i} \Sigma_{\mu\nu} F^{\mu\nu} \epsilon$$

Softly broken by gluino mass term

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Symmetries

Chiral (R) symmetry breaking in SU(3) SYM theory

- Global chiral $U(1)_A$ symmetry: $\lambda \mapsto e^{i\alpha\gamma_5}\lambda$
- Due to anomaly only \mathbb{Z}_6 remnant symmetry

$$\lambda \mapsto e^{i\frac{2\pi n}{6}\gamma_5}\lambda$$
 with $n \in \{1, \dots, 6\}$

• Spontaneously broken to \mathbb{Z}_2 symmetry in consequence of gluino condensate $\langle \bar{\lambda} \lambda \rangle \neq 0 \rightarrow 3$ different vacua

The Chiral Limit

$$D_{W}(x, y) = (4 + m) \delta_{x, y} - \frac{1}{2} \sum_{\mu = \pm 1}^{\pm 4} (1 - \gamma_{\mu}) \mathcal{V}_{\mu}(x) \, \delta_{x + \hat{\mu}, y}$$

with adjoint representation $[\mathcal{V}_{\mu}(x)]_{ab} = 2 \operatorname{tr} \left[\mathcal{U}^{\dagger}_{\mu}(x) \mathcal{T}_{a} \mathcal{U}_{\mu}(x) \mathcal{T}_{b} \right]$

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 5/16

Dirac Operator $D_{W}(x, y) = (4 + m) \delta_{x,y} - \frac{1}{2} \sum_{\mu=\pm 1}^{\pm 4} (1 - \gamma_{\mu}) \mathcal{V}_{\mu}(x) \delta_{x+\hat{\mu},y}$

Feature of SYM

• Particular directions of \mathbb{Z}_6 symmetry are favored by gluino condensate

Dirac Operator with Twisted Mass $D_{W}^{mtw}(x,y) = (4 + m + i\mu\gamma_5)\delta_{x,y} - \frac{1}{2}\sum_{\mu=\pm 1}^{\pm 4} (1 - \gamma_{\mu})\mathcal{V}_{\mu}(x) \,\delta_{x+\hat{\mu},y}$

Feature of SYM

- Particular directions of \mathbb{Z}_6 symmetry are favored by gluino condensate
- Deform lattice action by adding parity-breaking mass μ resembling a twisted mass
- *m* breaks chiral symmetry explicitly and generates a condensate $\sim \langle ar{\lambda} \lambda
 angle$
- μ leads to a condensate $\sim \langle ar{\lambda} \gamma_5 \lambda
 angle$

Dirac Operator with Twisted Mass $D_{W}^{mtw}(x, y) = (4 + m + i\mu\gamma_{5})\delta_{x,y} - \frac{1}{2}\sum_{\mu=\pm 1}^{\pm 4} (1 - \gamma_{\mu})\mathcal{V}_{\mu}(x) \,\delta_{x+\hat{\mu},y}$

Feature of SYM

- Particular directions of \mathbb{Z}_6 symmetry are favored by gluino condensate
- Deform lattice action by adding parity-breaking mass μ resembling a twisted mass
- *m* breaks chiral symmetry explicitly and generates a condensate $\sim \langle ar{\lambda} \lambda
 angle$
- μ leads to a condensate $\sim \langle ar{\lambda} \gamma_5 \lambda
 angle$

 \Rightarrow Possibility to get closer to chiral symmetry and supersymmetry at finite lattice spacing?

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

$\overline{\text{Dirac Operator with Twisted Mass}}_{D_{W}^{\text{mtw}}(x, y) = (4 + m + i\mu\gamma_5)\delta_{x,y} - \frac{1}{2}\sum_{\mu=\pm 1}^{\pm 4} (\mathbb{1} - \gamma_{\mu})\mathcal{V}_{\mu}(x) \,\delta_{x+\hat{\mu},y}}$ $= (4 + M \,e^{i\alpha\gamma_5})\delta_{x,y} - \frac{1}{2}\sum_{\mu=\pm 1}^{\pm 4} (\mathbb{1} - \gamma_{\mu})\mathcal{V}_{\mu}(x) \,\delta_{x+\hat{\mu},y}$

Feature of SYM

- Particular directions of \mathbb{Z}_6 symmetry are favored by gluino condensate
- Deform lattice action by adding parity-breaking mass μ resembling a twisted mass
- $m = M \cos(\alpha)$
- $\mu = M \sin(\alpha)$

\Rightarrow Possibility to get closer to chiral symmetry and supersymmetry at finite lattice spacing?

Veneziano-Yankielowicz Multiplet

mass softly broken susy susy $a - f_0$ gg a-*n*′ $m_{q}=0$ $m_q \neq 0$

Veneziano-Yankielowicz Multiplet

Dirac Operator with Twisted Mass

Numerical Investigations

Spectroscopy

- for different angles $\alpha = \arctan(\mu/m)$
- of connected (unphysical) mesons with good signal-to-noise-ration
- of full (physical) mesons including disconnected contributions
- of gluino-glue

Dirac Operator with Twisted Mass

Numerical Investigations

Spectroscopy

- for different angles $\alpha = \arctan(\mu/m)$
- of connected (unphysical) mesons with good signal-to-noise-ration
- · of full (physical) mesons including disconnected contributions
- of gluino-glue

Analytical Investigations

Calculation of

- · fermionic expectation values of lattice interpolators
- eigenvalues of the free Dirac operator

$$\langle O \rangle = \langle \langle O \rangle_{\mathsf{F}} \rangle_{\mathsf{G}} = \frac{1}{Z} \int \mathcal{D}\mathcal{U} \, \mathsf{e}^{-S_{\mathsf{G}}[\mathcal{U}]} \, \mathcal{D}\lambda \, \mathsf{e}^{-S_{\mathsf{F}}[\lambda,\mathcal{U}]} \, O[\lambda,\mathcal{U}]$$

Twist

 $\begin{array}{ll} \lambda & \mapsto \mathrm{e}^{\mathrm{i}\alpha\gamma_5}\lambda \\ \bar{\lambda} & \mapsto \bar{\lambda}\mathrm{e}^{\mathrm{i}\alpha\gamma_5} \\ \bar{\lambda}\lambda & \mapsto \bar{\lambda}\mathrm{e}^{2\mathrm{i}\alpha\gamma_5}\lambda \\ \bar{\lambda}\gamma_5\lambda & \mapsto \bar{\lambda}\gamma_5\mathrm{e}^{2\mathrm{i}\alpha\gamma_5}\lambda = \bar{\lambda}\lambda\cos(2\alpha) + \mathrm{i}\bar{\lambda}\gamma_5\lambda\sin(2\alpha) \end{array}$

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 8/16

$$\langle O \rangle = \langle \langle O \rangle_{\mathsf{F}} \rangle_{\mathsf{G}} = \frac{1}{Z} \int \mathcal{D}\mathcal{U} \, \mathsf{e}^{-S_{\mathsf{G}}[\mathcal{U}]} \, \mathcal{D}\lambda \, \mathsf{e}^{-S_{\mathsf{F}}[\lambda,\mathcal{U}]} \, O[\lambda,\mathcal{U}]$$

Twist

$$\begin{array}{rl} \lambda & \mapsto \mathbf{e}^{\mathbf{i}\alpha\gamma_5}\lambda \\ \bar{\lambda} & \mapsto \bar{\lambda}\mathbf{e}^{\mathbf{i}\alpha\gamma_5} \\ \begin{pmatrix} \bar{\lambda}\lambda \\ \mathbf{i}\bar{\lambda}\gamma_5\lambda \end{pmatrix} \mapsto \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ -\sin(2\alpha) & \cos(2\alpha) \end{pmatrix} \begin{pmatrix} \bar{\lambda}\lambda \\ \mathbf{i}\bar{\lambda}\gamma_5\lambda \end{pmatrix} \end{array}$$

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 8/16

General Observables

$$O_{\rm gen}(x) = a\,\bar{\lambda}_x\lambda_x + b\,\bar{\lambda}_x\gamma_5\lambda_x$$

Mesonic Observables

Results

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 9/16

General Observables

Mesonic Observables

	а	b	\mapsto	а	Ь
$egin{aligned} & O_{ extbf{a-f}_0}(x) = ar{\lambda}_x \lambda_x \ & O_{ extbf{a-\eta}'}(x) = ar{\lambda}_x \gamma_5 \lambda_x \end{aligned}$	1 0	0 1		$\cos(2\alpha) \\ {\rm i} \sin(2\alpha)$	$\dot{i}\sin(2lpha) \cos(2lpha)$

Results

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 9/16

General Observables

Mesonic Observables

Results

•
$$\langle O_{\mathbf{a}\text{-}f_0}(n)\bar{O}_{\mathbf{a}\text{-}f_0}(m)\rangle_{\mathsf{F}}(0^\circ) = \langle O_{\mathbf{a}\text{-}\eta'}(n)\bar{O}_{\mathbf{a}\text{-}\eta'}(m)\rangle_{\mathsf{F}}(90^\circ) \langle O_{\mathbf{a}\text{-}\eta'}(n)\bar{O}_{\mathbf{a}\text{-}\eta'}(m)\rangle_{\mathsf{F}}(0^\circ) = \langle O_{\mathbf{a}\text{-}f_0}(n)\bar{O}_{\mathbf{a}\text{-}f_0}(m)\rangle_{\mathsf{F}}(90^\circ)$$

• $\langle O_{\mathbf{a}\cdot\eta'}(\mathbf{n})\bar{O}_{\mathbf{a}\cdot\eta'}(\mathbf{m})\rangle_{\mathsf{F}}(45^\circ) = \langle O_{\mathbf{a}\cdot\mathbf{f}_0}(\mathbf{n})\bar{O}_{\mathbf{a}\cdot\mathbf{f}_0}(\mathbf{m})\rangle_{\mathsf{F}}(45^\circ)$

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 9/16

Eigenvalues

Goals

- Effect of twist angle α
- *O*(*a*) improvement

Dirac Operator with Mass Twist

$$D_{\mathsf{W}}^{\mathsf{tw}}(x,y) = (4 \qquad + M \mathbf{e}^{\mathbf{i}\alpha\gamma_{5}})\delta_{x,y} - \frac{1}{2} \sum_{\mu=\pm 1}^{\pm 4} \left(\mathbb{1} \qquad -\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \,\delta_{x+\hat{\mu},y}$$

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 10/16

Eigenvalues

Goals

- Effect of twist angle α
- $\mathcal{O}(a)$ improvement \Rightarrow angle φ

Dirac Operator with Double Twist

$$D_{\mathsf{W}}^{\mathsf{dtw}}(x,y) = (4 \, \mathsf{e}^{\mathsf{i}\varphi\gamma_5} + M \, \mathsf{e}^{\mathsf{i}\alpha\gamma_5}) \delta_{x,y} - \frac{1}{2} \sum_{\mu=\pm 1}^{\pm 4} \left(-\mathsf{e}^{\mathsf{i}\varphi\gamma_5} - \gamma_{\mu} \right) \mathcal{V}_{\mu}(x) \, \delta_{x+\hat{\mu},y}$$

Idea based on G. Bergner, T. Kästner, S. Uhlmann, A. Wipf, Annals Phys. 323 (2009)
 General action found in G. Immirzi, K. Yoshida, Nucl. Phys. B210 (1982)

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Fermionic Kernel D	Eigenvalues $\lambda^\dagger \lambda$
$\gamma^{\mu}\partial_{\mu} + m - rac{r}{2}\Delta$	$p^2 + m^2 + amrp^2 + \mathcal{O}(a^2)$

Fermionic Kernel D
$\gamma^{\mu}\partial_{\mu}+m-rac{r}{2}\Delta$
$\gamma^{\mu}\partial_{\mu} + M \mathbf{e}^{\mathbf{i}lpha\gamma_{5}} - rac{\mathbf{r}}{2}\Delta$

Eigenvalues $\lambda^{\dagger}\lambda$ $p^2 + m^2 + amrp^2 + \mathcal{O}(a^2)$ $p^2 + M^2 + aMrp^2\cos(\alpha) + \mathcal{O}(a^2)$

Fermionic Kernel D	Eigenvalues $\lambda^{\dagger}\lambda$		
$\gamma^{\mu}\partial_{\mu}+m-rac{r}{2}\Delta$	$p^2 + m^2 + amrp^2 + \mathcal{O}(a^2)$		
$\gamma^{\mu}\partial_{\mu}+M\mathrm{e}^{\mathrm{i}lpha\gamma_{5}}-rac{r}{2}\Delta$	$p^2 + M^2 + aMrp^2\cos(\alpha) +$	0 for $lpha=90^\circ$ - $\mathcal{O}(a^2)$,
$\gamma^\mu \partial_\mu + {\it m} + rac{{ m i} {\it r}}{2} \gamma_5 \Delta$	$p^{2} + m^{2}$	$+ \kappa a^2$	$+ \mathcal{O}(a^4)$
• with $\kappa = -rac{1}{3}\sum_{\mu} p_{\mu}^4 + rac{r^2}{2}$	$\left(\sum_{\mu} p_{\mu}^2\right)^2$		

Wuhan, June 19, 2019 11/16

Fermionic Kernel D	Eigenvalues $\lambda^\dagger\lambda$		
$\gamma^{\mu}\partial_{\mu}+m-rac{r}{2}\Delta$	$p^2 + m^2 + amrp^2 + \mathcal{O}(a^2)$		
$\gamma^{\mu}\partial_{\mu}+M\mathrm{e}^{\mathrm{i}lpha\gamma_{5}}-rac{r}{2}\Delta$	$p^2 + M^2 + aMrp^2 \cos(\alpha) + O(a^2)$		
$\gamma^{\mu}\partial_{\mu}+m+rac{\mathrm{i}r}{2}\gamma_{5}\Delta$	$p^2 + m^2$ $+ \kappa a^2 + \mathcal{O}(a^4)$		
$\gamma^{\mu}\partial_{\mu} + M \mathrm{e}^{\mathrm{i}lpha\gamma_{5}} + rac{r}{2} \mathrm{e}^{\mathrm{i}arphi\gamma_{5}}\Delta$	$p^2 + M^2 + aMrp^2\cos(\alpha - \varphi) + \kappa a^2 + \mathcal{O}(a^3)$		
• with $\kappa=-rac{1}{3}\sum_{\mu}p_{\mu}^4+rac{r^2}{2}\Big(\sum_{\mu}p_{\mu}^2\Big)^2$			

Fermionic Kernel D	Eigenvalues $\lambda^{\dagger}\lambda$
$\gamma^{\mu}\partial_{\mu} + m - rac{r}{2}\Delta$	$p^2 + m^2 + amrp^2 + \mathcal{O}(a^2)$
$\gamma^{\mu}\partial_{\mu}+M\mathrm{e}^{\mathrm{i}lpha\gamma_{5}}-rac{r}{2}\Delta$	$p^2 + M^2 + aMrp^2 \cos(\alpha) + \mathcal{O}(a^2)$
$\gamma^{\mu}\partial_{\mu}+m+rac{{ m i}r}{2}\gamma_{5}\Delta$	$p^2 + m^2$ $+ \kappa a^2 + \mathcal{O}(a^4)$
$\gamma^{\mu}\partial_{\mu} + M e^{i\alpha\gamma_{5}} + \frac{r}{2} e^{i\varphi\gamma_{5}} \Delta$	$p^{2} + M^{2} + aMrp^{2}\cos(\alpha - \varphi) + \kappa a^{2} + \mathcal{O}(a^{3})$

• with
$$\kappa = -\frac{1}{3} \sum_{\mu} p_{\mu}^4 + \frac{r^2}{2} \left(\sum_{\mu} p_{\mu}^2 \right)^2$$

• Mass & Wilson term orthogonal $\Rightarrow \mathcal{O}(a)$ improvement

Connected Correlators

$$D_{\mathsf{W}}^{\mathsf{tw}}(x, y) = (4 + m + \mathbf{i}\mu\gamma_5)\delta_{x, y} - \frac{1}{2}\sum_{\mu=\pm 1}^{\pm 4} (\mathbb{1} - \gamma_{\mu})\mathcal{V}_{\mu}(x)\,\delta_{x+\mu, y}$$

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 12/16

Connected Correlators

 \Rightarrow improvement of the chiral symmetry & supersymmetry at finite lattice spacing may be possible

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser Wuhan, June 19, 2019 13/16

Mesonic States

Figure: $8^3 \times 16$, preliminary

Mesonic States & Gluino-Glue

Figure: $16^3 \times 32$, preliminary

Summary

SYM on the lattice

- New analytical investigations
 - Fermionic expectation values
 - Eigenvalues of the free Dirac operator
- Lattice results
 - Fine tuning of bare gluino mass m (and μ) necessary to restore supersymmetry & chiral symmetry
 - Chiral symmetry of multiplet improved at finite lattice spacing with 45° twist
 - Wilson term twist provides an opportunity for $\mathcal{O}(a)$ improvement

Outlook

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 16/16

SYM on the lattice

Outlook

- Start of SuperMUC New Generation
- More statistics to confirm $m_{a-\eta'} \approx m_{a-f_0} \approx m_{gg}$ along 45° twist \Rightarrow improvement of the susy at finite lattice spacing may be possible
- Spectroscopy at 3 different couplings β for continuum limit

Appendix: $pq\chi pt$

SYM

• Only 1 flavor \Rightarrow partially quenched framework

 $\mathcal{N} = 1$ SYM with a Twist Marc Steinhauser

Wuhan, June 19, 2019 17/16

Appendix: $pq\chi pt$

SYM

• Only 1 flavor \Rightarrow partially quenched framework

Pro

- Inclusion of anomalous chiral symmetry
- Masses of pseudoscalars, i.e. a- π , a- η'

Appendix: $pq\chi pt$

SYM

- Only 1 flavor \Rightarrow partially quenched framework

Pro

- Inclusion of anomalous chiral symmetry
- Masses of pseudoscalars, i.e. a- π , a- η'

Contra

- No native scalars, i.e. a-a, a-f₀
- · No direct access to gauge field for hybrids, i.e. gluino-glue

Wilson-Dirac operator $D_{W} = D_{W}^{tw}(\mu = 0)$

- is γ_5 -Hermitian: $(\gamma_5 D_W)^{\dagger} = \gamma_5 D_W$
- is C-Antisymmetric: $(CD_W)^T = -CD_W$
- $det(D_W) \in \mathbb{R}^+$
- $\mathsf{Pf}(D_{\mathsf{W}}) \in \mathbb{R}$

Wilson-Dirac operator $D_{\rm W} = D_{\rm W}^{\rm tw}(\mu = 0)$

- is γ_5 -Hermitian: $(\gamma_5 D_W)^{\dagger} = \gamma_5 D_W$
- is C-Antisymmetric: $(CD_W)^T = -CD_W$
- $det(D_W) \in \mathbb{R}^+$
- Pf $(D_W) \in \mathbb{R}$

Twisted Wilson-Dirac operator $D_{W}^{tw}(\mu \neq 0)$

- in general $\mathsf{Pf}(\mathit{D}^{\mathsf{tw}}_{\mathsf{W}}) \in \mathbb{C}$
- in continuum theory $m \to m_{\text{crit}}, \ \mu \to 0, \ a \to 0$: $\mathsf{Pf}(D_{\mathsf{W}}^{\mathsf{tw}}) \in \mathbb{R}$
- at finite lattice spacing: phase of $Pf(D_W^{tw}) = |Pf(D_W^{tw})| \cdot e^{i\alpha}$ negligible

