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Phases of a QFT

• Given a general QFT, it is interesting to study its behaviour at different
energy scales, i.e. its renormalisation group flows.

• IR phases:

I. Gapped, e.g 4d Yang-Mills (YM)
II. Massless, e.g massless QCD
III. Conformal, e.g. theories with IR fixed point (FP)
IV. Non-trivially gapped, i.e. topological QFT, BPS states...

• For a YM theory with fermions, one has different scenarios depending on
Nf and Nc:

1. Small Nf : chiral symmetry breaking (IR massless)
2. Nl

f < Nf < Nu
f : Banks-Zaks (BZ) FP conformal window (IR

conformal)
3. Nf > Nu

f : not asymptotically free
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Conformal window

• Upper limit Nu
f of the conformal window can be computed perturbatively

• At smaller Nf the IR FP moves towards stronger couplings

• Finding the lower limit Nl
f is a nonperturbative problem

• For Nf below but near Nl
f : near conformal behaviour, walking coupling

• The values of Nu
f and Nl

f depend on the fermion representation. Lower
values for adjoint rep.

• SYM (Nf = 1/2) is IR massless.

• Here we focus on the IR phase of Nf = 2, 3/2, i.e. 4 resp. 3 Majorana
fermions.
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IR conformal phase

• Gauge invariant operators obtain an anomalous scaling dimension γ as
they flow

• γ freezes at the BZ fixed point

• At the fixed point:

X Particle interpretation fails
X Observables: correlation functions, operator dimensions

• Methods to compute observables: Lattice Monte Carlo (LMC), conformal
bootstrap, ...

• Within LMC: take mass-deformed theory, i.e. away from the FP and
compute the anomalous dimensions from

X Mass spectrum of the theory
X Monte Carlo renormalisation group techniques
X Spectral density of Dirac operator (mode number)
X Recently: Gradient flow and RG flow [Carosso, Hasenfratz and Neil,

PRL 121 no.20, 201601]
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IR conformal phase II

Why to study the IR phase of QFT (on a lattice)?

• In general, important to classify theories which become conformal at the IR

• It is hard to analitically study non-susy theories.

• Near conformal QFTs are important for phenomenology, e.g. technicolor
models

• Being able to study RG flow through the GF opens up the possibility to
compute conformal data on the lattice
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Gradient flow vs RG flow

• GF similar to RG: smoothening of the fields ↔ elimination of high energy
modes

• YM GF is however not a complete RG transformation:

7 Lack of scale transformation (dilatation)
7 Lack of normalisation of the fields

• In lattice field theory:

3 Consider correlators at long distances
3 Include renormalisation of the fields by using an exact conserved

current (e.g. vector)

• GF allows for blocked fields without having to know the blocked action
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GF and RG flow

• GF: φ→ φt. High momentum modes over
1

a
√
t

are suppressed.

• RG: changes lattice spacing a→ a′ = b a and couplings g → g′, m→ m′

Consider correlator of composite operators O(φ;x). The two-point
function at x0 >> a′ transforms as:

〈O(0)O(x0)〉g,m = b−2(dO+γO)〈O(0)O(x0/b)〉g′,m′

• RHS: Monte Carlo RG (MCRG) ⇒ First generate MC ensamebles from
UV action and then RG transform

〈O(0)O(x0/b)〉g′,m′ = 〈Ob(0)Ob(x0/b)〉g,m︸ ︷︷ ︸
Ob≡O(φb)

• Relate blocked and flowed fields through φb(xb) = bdφ+η/2φt(bxb) and√
t ∝ b

〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉 = b

2∆O−2nO∆φ , ∆i = di + γi (canonical + anomalous dim)
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GF and RG flow II

• It is numerically easier to only flow one of the operators i.e.
Ot(0)→ O(0). The cost is to have errors O(a

√
t/x0).

• One can get rid of ∆φ by using some conserved operator V as γV = 0

RO(t, x0) =
〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

(
〈V(0)V(x0)〉
〈V(0)Vt(x0)〉

)nO/nV

= b∆O−(nO/nV )dV

∝ tγO/2+dO/2−(nO/nV )dV/2

• From there, the mass anomalous dimension of the operator O can be
defined as

γO(t̄) =
log(RO(t1)/RO(t2))

log (
√
t1/
√
t2)
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Simulations

• We simulated YM theory + 3 and 4 Majorana Wilson fermions in the
adjoint rep.

• Tree-level Symanzik improved gauge action and stout smearing for the link
fields in the Wilson-Dirac operator

• The stout smearing is iterated 3 times with parameter ρ = 0.12

• Fermion path integral:∫
[dψ] e−

1
2
ψ̄Dwψ = Pf(CDw) = ±

√
detDw

• We used polynomial hybrid Monte Carlo to generate field configurations

• We analysed the mass anomalous dimension of the pseudoscalar operator
with the GF

• To compute RO, we set V to be the vector current

• Results compared to previous computations using the mass spectrum and
the mode number [Desy-Münster collaboration, JHEP01(2018)119,Phys.
Rev. D 96, 034504]
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Lattice parameters

Nf LS LT β κ amPCAC

2 24 64 1.5 0.1315 0.16775(25)

2 24 64 1.5 0.1325 0.128730(46)

2 24 64 1.5 0.1350 0.03136(15)

2 32 64 1.5 0.1325 0.128840(55)

2 32 64 1.5 0.1335 0.089619(74)

2 32 64 1.5 0.1350 0.030414(45)

2 32 64 1.7 0.1285 0.147091(22)

2 32 64 1.7 0.1290 0.131717(22)

2 32 64 1.7 0.1300 0.100878(47)

3/2 24 48 1.7 0.134 -0.00097(22)

3/2 32 64 1.7 0.134 -0.00052(11)
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γPS(x0), Nf = 2
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Nf = 2, chiral extrapolation β = 1.5, 1.7
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Other previous results for Nf = 2

Paper β γ∗

Ref 1 1.5 0.376(3)

Ref 1 1.7 0.274(10)

Ref 2 - 0.371(20)

Ref 3 - 0.269(2)(5)

Ref 4 - 0.20(3)

Ref 5 - 0.31(6)

Ref 6 - 0.22(6)

Ref 7 - 0.50(26)

• Ref 1: Desy-Münster collaboration,
JHEP01(2018)119,Phys. Rev. D
96, 034504

• Ref 2: A. Patella, Phys. Rev.
D86(2012) 025006

• Ref 3: M. Garćıa Pérez, A.
González-Arroyo, L. Keegan and
M. Okawa JHEP1508(2015)

• Ref 4: J. Rantaharju et. al Phys.
Rev. D93(2016) 094509

• Ref 5: T. DeGrand, Y. Shamir and
B. Svetitsky, Phys. Rev.
D83(2011) 074507

• Ref 6: L. Del Debbio, B. Lucini,
A. Patella, C. Pica and A.
Rago,Phys. Rev. D82(2010)

• Ref 7: J. Giedt, Int. J. Mod.
Phys. A31(2016) 1630011
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Nf = 3/2, mass ∼ 0, β = 1.7
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Summary

• Study of the IR phases of a QFT important from the theoretical and
phenomenological point of view

• More specifically the conformal and near conformal regions

• It is possible to directly study the RG flow through the GF on the lattice

• This could also represent a new way to compute CFT data on the lattice

• We computed γ for Nf = 2 and Nf = 3/2 adjoint QCD:

* Results of Nf = 2 seem to be more compatible with smaller values
0.2 < γ∗ < 0.3.

* For Nf = 3/2 there is less data to compare to. However, the results
show possible IR conformality

• We still have to better control the errors when approaching the IR, i.e the
lattice artifacts which explicitely drive the theory away from the FP.
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Thank you for your attention!
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Minimal SYM in four dimensions

• Only supersymmetric theory without scalars and thus similar to QCD

• Vector supermultiplet with one Yang-Mills field A and one Majorana
spinor λ in the adjoint representation

LE =
1

4
F 2 +

1

2
λ̄( /D +mg̃)λ+

θ

32π2
F̃F

• Lagrangian invariant under SUSY-transformations δAµ = 2iε̄γµλ,
δλa = −σµνF aµνε
• Expected to have mass gap, confinement and spontaneous breaking of

chiral symmetry

• Low energy degrees of freedom: glueballs, meson-like states, baryon-like
(being currently investigated)
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Quark confinement: centre symmetry

• SU(N) SYM vacuum is a confining medium for external quarks

• Medium probed through Polyakov loops (PL) < Φ >= exp(−βF )

• Centre symmetry unbroken at zero temperature, vanishing PL VEV

• Quark deconfinement at high temperatures, non vanishing PL VEV :
broken centre symmetry

• Unlike QCD, the adjoint spinors do not break the centre symmetry
explicitely. Deconfinement is true phase transition for all gaugino masses

• Determine deconfinement temperature : Compute behaviour of PLs at
finite temperatures
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Chiral symmetry

• Chiral symmetry in N = 1 SYM is an U(1)-symmetry
λ→ λ′ = exp(−iωγ5)λ

• U(1)-symmetry broken by instantons → ∂µJ
µ
5 ∼ Ncg

2F̃F

↪→ the actual chiral symmetry is the discrete subgroup Z2Nc

• Z2Nc spontaneously broken down to Z2 at zero temperature by a
non-vanishing bi-gaugino condensate < λ̄λ >∼ Λ3

• confinement → chiral symmetry breaking: It can be seen from
non-renormalisation and holomorphicity of the superpotential, assuming
that low-energy EFT is massive with colour singlets d.o.f

• At high temperatures Z2Nc symmetry is expected to be restored

• Phase transition to vanishing condensate

• Existence of Nc degenerate vacua

• Breaking of discrete symmetry → domain wall interpolating between vacua

• Domain wall is a BPS-saturated state (Dvali and Shifman, 96)
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Testing the phase structure of N = 1 SYM

• At T = 0 the theory is confining and chiral symmetry is spontaneously
broken

• Expectation at high temperatures: deconfinement and restoration of
Z2Ncchiral symmetry

Do both phase transitions occour at the same critical temperature?

Measure order parameters on the lattice varying Nt

(
T =

1

Nta(β)

)
Polyakov loop: phase transition when < |PL| > 6= 0

gluino condensate vanishes when chiral symmetry is restored ∼< tr(D−1
w ) >
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It looks simple but...

• Measurement of Polyakov loops is not problematic as it only depends on
the gauge fields

• Measuring the gaugino condensate is however not straightforward: On the
lattice an additive renormalisation constant is needed because of the
Wilsonian fermion discretisation

〈λλ〉R = Zλλ(β)(〈λλ〉B − b0).

• In some previous finite temperature studies b0 is chosen so that the
condensate vanishes at T = 0

• Thus it is not possible to get a reliable zero temperature value for Wilson
fermions

• One way out is to use chiral lattice fermions...

• Another way out is by means of a gradient flow
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Gaugino condensate from the gradient flow

• Currents and densities which are explicitly broken by the lattice
discretization should be more accessible within this method

• No additive renormalisation constant necessary for the flowed condensate,
even with Wilson fermions

• The flowed condensate is measured on the lattice through

〈χt(x)〉 = −
∑
v,w

〈
tr

K(t, x; 0, v)︸ ︷︷ ︸
diff eq kernel

Dirac propagator︷ ︸︸ ︷
S(v, w) K(t, x; 0, w)†


〉

• Numerically, one only has to flow the inverse Dirac operator...

• ...The inversion and the fermion flow are however the most expensive part
of the numerics
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Numerical results for SU(2) SYM
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• small κ⇒ big gaugino mass: Chiral restoration crossover very flattened
out
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• Our biggest κ⇒ gaugino mass close to zero: jump of order parameter
more pronounced

• Similar results for different lattice parameters → there should be a real
phase transition
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• Deconfinement critical temperature coincides with peak of chiral
susceptibility

Deconfinement and chiral restoration phase transitions

occur at the same critical temperature T ∼ 0.25
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How can we understand/explain this observation?

• Witten, 97: semiclassically studied configuration of branes in M-theory,
which is in universality class of N = 1 SYM

• He formally showed that (QCD strings ↔ fundamental strings) can end in
(domain walls ↔ D-branes)

• Qualitatively (Rey):

* Domain wall connects different θ-vacua
* Confinement: Monopole cond. (θ = 0), dyons (θ 6= 0)
* Domain wall colour charged when dyons pass through → confining

string can end there

• Wiese, Holland, Campos; 98:

* EFT of PL and condensate with SU(3)
* Low temperatures: domain wall with chiral symmetry and

deconfinement in the core
* Near phase transition: deconfined layer appears and expands towards

infinity
* Witten observation holds only if chiral restoration and deconfinement

occur simultaneously
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How can we understand/explain this observation?

• Our results seem to support such a nice semiclassical picture... by solving
the full theory numerically!

• Recent developments on higher form discrete symmetries and anomaly
matching → analytical study of phase structure in thermal QFT

• From there: predictions for a bound Tdeconfinement ≤ Tchiral in SYM
[Komargodski,Sulejmanpasic, Ünsal; Shimizu and Yonekura]

• Our results imply that the bound must be saturated.

• Same observation for adjoint QCD on R3 × S1
[Ünsal, Poppitz, Anber]
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