Walking, complex CFT, or dilaton

Lattice Higgs Collaboration (LatHC)

Zoltan Fodor, Kieran Holland, JK, Daniel Nogradi, Chik Him Wong

Julius Kuti

University of California, San Diego

37th international conference on lattice field theory

Wuhan, June 16-22, 2019
Tantalizing questions on walking, complex CFT, or dilaton:

- Emergent light 0++ scalar when β-function is small (near-conformal)?
- Two different scenarios: complex CFT, or dilaton?
- IR EFT tests for complex CFT, or dilaton in p-regime ($1/M_\pi \ll L$)
- Strategy for EFT in the ϵ-regime ($1/M_\pi \gg L$)

Tantalus, a king of ancient Phrygia in Greek mythology, made the mistake of gravely offending the gods. As a punishment, once dead the king was forced to stand in a pool of water, with fruit hanging just over his head. The water would recede every time the king tried to take a sip, and the fruit would lift away every time he reached to take a bite.
“walking” β-function in correlation with emergent light scalar

- $n_f=10$ β-function (new results, no IRFP)
 Kieran Holland’s talk
- $n_f=12$ β-function (new LatHC results, no IRFP, no γ^*, walking?)
- $n_f=13$ β-function LatHC reports $n_f=13$ conformal IRFP (?)
- 5-loop β-function below CW: a pair of complex conjugate zeros (avatar of complex CFT ?)
- our focus is on sextet model, also considering new $n_f=12$ studies
“walking” β-function in correlation with emergent light scalar

- for us two candidate theories remain tantalizing for field theory interest and BSM implications of the near-conformal walking in correlation with the emergent light scalar

- sextet model: primary interest well motivated (case study)

- $n_f=12$ fundamental rep we continue to consider as perhaps the closest to a walking candidate

- we are curious about $n_f=8$ and $n_f=10$ but should be left for the LSD collaboration to understand
new at $nf=12$: tuned step β-function from 64^4 volumes

SSC flow $s=2$ $c=0.2$ target D $g^2 = 6.5985(18)$ in continuum limit

$$\frac{(g^2(sL) - g^2(L))/\log(s^2)}{a^2/L^2} = c_0 + c_1 \cdot \frac{a^2}{L^2}$$

$c_0 = 0.111 \pm 0.012$
$c_1 = -52 \pm 4.6$

Boulder Domain Wall fitting

χ^2/dof = 1.1

LatHC fitting

Kieran Holland's talk

SSC flow $s=2$ $c=0.2$ target F $g^2 = 6.9842(14)$ in continuum limit

$$\frac{(g^2(sL) - g^2(L))/\log(s^2)}{a^2/L^2} = c_0 + c_1 \cdot \frac{a^2}{L^2}$$

$c_0 = 0.117 \pm 0.011$
$c_1 = -70.5 \pm 4.7$

Boulder Domain Wall fitting

$L=32 \rightarrow 64$ step 2 (new)

$L=32 \rightarrow 64$ (new)

χ^2/dof = 0.44

LatHC fitting

target F $s=2$ $c=0.2$ tuning

$$g^2 (tuned) = 6.9842 \pm 0.0014$$

$L=32 \rightarrow 64$ (new)

$L=32 \rightarrow 64$

χ^2/dof = 0.3 $Q = 0.91$
new at \(nf=12 \): tuned step \(\beta \)-function from \(64^4 \) volumes

1. our step \(\beta \)-function is also consistent with the continuous \(\beta \)-function on the GF
\(\beta = t \cdot \frac{dg^2}{dt} \) we introduced, tested, and used it on the lattice before

2. the method was re-introduced at this conference
new at nf=12: anomalous dimension γ from Dirac spectrum

Kieran Holland’s talk

$L \rightarrow 2L$ step function renormalization procedure:

$v_R(\lambda_R) = v(\lambda) \quad \lambda_R = Z_p^{-1} \cdot \lambda$

$\frac{\lambda_L}{\lambda_{2L}} = 2 \frac{Z_p(g_0, L/a)}{Z_p(g_0, 2L/a)}$ from the matching condition
walking and complex CFT
walking and complex CFT

Potts model Q potts spin ~ flavor described by CFT

Q=2 - 4 pair of real CFT with pair of zeros of the beta function works for continuous Q in cluster rep

Q > 4 complex CFT, like Q=5, 6, 7 …

The Q=5 Potts model is interpreted now as near-conformal and walking, controlled by the complex IRFP pair Gorbenko et al.

- Q = 5 very large scale separation without tuning
- slowly drifting scale-dependence in critical exponents is calculable:
- central charge \(c_{\text{drift}}(L) = c_R - \alpha \tan(\gamma \log \frac{L}{L_0}) + ... \)
- flow in far infrared is the first order transition point (like \(\chi \)SB in gauge theories)
walking and complex CFT

Potts model \(Q \) potts spin \(\sim \) flavor
described by CFT

\(Q = 2 \) - 4 pair of real CFT with pair of zeros of the beta function
works for continuous \(Q \) in cluster rep

\(Q > 4 \) complex CFT, like \(Q = 5, 6, 7 \ldots \)

The \(Q = 5 \) Potts model is interpreted now as near-conformal and
walking, controlled by the complex IRFP pair. Gorbenko et al.

- efficient Potts CUDA code for integer \(Q \)
 Swendsen-Wang \(\sim 1 \) ns/spin

- CPU cluster code for arbitrary \(Q \) (2 complex couplings \(Q = 4 + \epsilon \))
 needed in lattice realization of the complex theory

- Corner transfer matrix combined with RG outperforms simulations
 at integer \(Q \)

\[
\begin{array}{ccccccccc}
Q & 5 & 6 & 7 & 8 & 9 & 10 \\
\xi & 2512.2 & 158.9 & 48.1 & 23.9 & 14.9 & 10.6
\end{array}
\]
walking and complex CFT

sample results from Corner Transfer Matrix (Potts model)

Corner Transfer Matrix $\rightarrow E_+^L(M)$ L lattice size
combined with RG (block size M)

$E = (E^+ + E^-)/2$

$E = (1 + 1/\sqrt{Q})/2$ (exact from duality)

$E^- - E^+ = 0.0265$ latent heat $Q=5$ (Baxter) 0.0275 CTM

$\xi = 2512.2$
max lattice size 4000 \times 4000
max block size $M=200$

$T_c = 1/\log(1 + \sqrt{5})$

$Q=2$ critical exponent η

Corner Transfer Matrix RG

$\eta = 1/4$
max lattice size 1000 \times 1000
max block size $M=140$
walking and complex CFT

sample results from Corner Transfer Matrix (Potts model)

Q=5 internal energy E^\pm (disordered) E^- (ordered)

Corner Transfer Matrix $\rightarrow E^\pm_L(M)$ (Lattice size L)
combined with RG (block size M)

$T_c = 1/\log(1 + \sqrt{5})$

$E = (E^+ + E^-)/2$
$E = (1 + 1/\sqrt{Q})/2$ (exact from duality)

$E^- - E^+ = 0.0265$ latent heat $Q=5$ (Baxter) 0.0275 CTM

$\xi = 2512.2$
max lattice size 4000×4000
max block size $M=200$

$Q=2$ critical exponent η

Corner Transfer Matrix RG

$\eta = 1/4$

max lattice size 1000×1000
max block size $M=140$

but walking from complex CFT emerged first in 4d gauge theories
walking and complex CFT

Luca Vecchi 2010 talks about complex CFT built on Gies et al., Terao et al., Kaplan et al.

walking and complex CFT new paradigm?
flavor symmetry group is the same for walker and the CFT! paradigm change from dilaton?
walking and complex CFT

Luca Vecchi 2010 talks about complex CFT built on Gies et al., Terao et al., Kaplan, Son et al. …

walking and complex CFT new paradigm? flavor symmetry group is the same for walker and the CFT! paradigm change from dilaton?

we started work earlier on the realization of walking based on this idea

to distinguish near-conformal and conformal finite volume correlators (drifting scaling exponents distinguished from fixed conformal exponents). not knowing the conformal exponents of the complex theory makes the analysis challenging

Gorbenko et al. turned to a two-dimensional example (Potts model) for detailed realization of walking without apparently knowing about Vecchi

Light scalar is expected to be described by EFT of linear \(\sigma \)-model in deep infrared limit \(m \to 0 \)

Data is high above linear \(\sigma \)-model regime

\[
\mathcal{L}_{\text{CFT}} + \frac{f}{2} \bar{O}_{ij} O^{ij}. \text{ four-fermion deformation}
\]

\[
\Lambda \frac{df}{d\Lambda} = \nu \tilde{f}^2 + (2\Delta - d) \tilde{f} + a
\]

\[
\beta'_{\tilde{f}} |_{\pm} = \pm 2\sqrt{D}.
\]

\[
\Delta_{\pm} = \frac{d}{2} \pm \sqrt{D}.
\]
Data is high above linear σ-model regime

simplest: light Higgs-like particle of linear σ-model in PT:

$$SU(2) \otimes SU(2) \sim O(4)$$ for sextet model

$$L = \frac{1}{2} (\partial_\mu \tilde{\sigma})^2 + \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} \mu^2 (\sigma^2 + \tilde{\sigma}^2) + \frac{1}{4} g (\sigma^2 + \tilde{\sigma}^2)^2 - \varepsilon \sigma$$

triviality analysis in $m_\sigma/f_\pi < 3$ range

$m_\pi = 0$ circa 1987-1988

$m_\sigma^2 \geq 3 m^2_\pi$ tree level relation

$m_\sigma^2 \geq 2 m^2_\pi$ with loop corrections

high above it non-linear σ-model or dilaton EFT

$$L = \frac{1}{2} \partial_\mu \sigma \partial_\mu \sigma - V(\sigma) + \frac{f^2_\pi}{4} (D_\mu \Sigma^\dagger D_\mu \Sigma) \left(1 + 2 a \frac{\sigma}{f_\pi} + b \frac{\sigma^2}{f^2_\pi} + b_3 \frac{\sigma^3}{f^3_\pi} + \ldots \right)$$

$$\Sigma = e^{i \tau^a \tau^a / f_\pi} \text{ with } \tau^a \text{ Pauli matrices}$$

$$V(\sigma) = \frac{1}{2} m_\sigma^2 \cdot \sigma^2 + d_3 \left(\frac{m^2_\sigma}{2 f_\pi} \right) \cdot \sigma^3 + d_4 \left(\frac{m^2_\sigma}{8 f^2_\pi} \right) \cdot \sigma^4 + \ldots$$

linear σ-model limit (SM): $a = b = d_3 = d_4 = 1$

dilaton EFT will require $a = b^2$, $b_3 = 0$ and special $y(\mu)$ in L

we will test the elegant Golterman-Shamir formulation of the dilaton theory

p-regime data: 0^{++} is tracking the Goldstone pion with $m^2_\sigma \geq m^2_\pi$, not like linear σ-model

New EFT is needed to extrapolate data to massless chiral limit

\[\beta = 3.20 \] Decresing M_π

\[\beta = 3.25 \] Decresing M_π

\[\beta = 3.20 \] Decresing M_π

\[\beta = 3.25 \] Decresing M_π
Data is high above linear σ-model regime

simplest: light Higgs-like particle of linear σ-model in PT:

$$SU(2) \otimes SU(2) \sim O(4)$$ for sextet model

$$L = \frac{1}{2} (\partial_\mu \pi)^2 + \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} \mu^2 (\sigma^2 + \pi^2) + \frac{1}{4} g (\sigma^2 + \pi^2)^2 - \epsilon \sigma$$

we will test the Golterman-Shamir formulation of the dilaton theory high above the linear σ-regime

$$m_\sigma^2 \geq 3 m_\pi^2$$ tree level relation

$$m_\sigma^2 \geq 2 m_\pi^2$$ with loop corrections

high above it non-linear σ-model or dilaton EFT

alternative to pinched walking from complex CFT which does not require dilaton of spontaneous scale symmetry breaking

$$\Sigma = e^{i \sigma^a \tau^a}$$ with τ^a Pauli matrices

$$V(\sigma) = \frac{1}{2} m_\sigma^2 \cdot \sigma^2 + d_3 \left(\frac{m_\sigma^2}{2 f_\pi} \right) \cdot \sigma^4 + d_4 \left(\frac{m_\sigma^2}{8 f_\pi^2} \right) \cdot \sigma^6 + ...$$

linear σ-model limit (SM): $a = b = d_3 = d_4 = 1$

dilaton EFT will require $a = b^2$, $b_3 = 0$ and special $y(\mu)$ in L

triviality analysis in $m_\sigma/f_\pi < 3$ range

$m_\pi = 0$ circa 1987-1988
dilaton EFT with \(\sigma(x) \) dilaton field and \(\pi^a(x) \) Goldstone bosons

\[
L = \frac{1}{2} \partial_\mu \chi \partial_\mu \chi - V_d(\chi) + \frac{f_\pi^2}{4} \left(\frac{\chi}{f_d} \right)^2 \text{tr} \left[\partial_\mu \Sigma^\dagger \partial_\mu \Sigma \right] - \frac{f_\pi^2 m_\pi^2}{4} \left(\frac{\chi}{f_d} \right)^2 \text{tr} \left(\Sigma + \Sigma^\dagger \right)
\]

\(y = 3 - \gamma \) where \(\gamma \) is the mass anomalous dimension

\(\chi(x) = f_d e^{\sigma(x)/f_d} \) describes the dilaton field \(\sigma(x) \)

pion field \(\Sigma = e^{i\pi^a \tau^a / f_\pi} \) with \(\tau^a \) Pauli matrices, tree level pion mass \(m_\pi^2 = 2Bm \)

Golterman-Shamir Appelquist et al. notation

but we do our own IML analysis which is required for any conclusion!

- dilaton EFT has long history
- **Golterman-Shamir** expansion in \(x = N_f / N \) variable
- Veneziano limit \(N \to \infty \)
- predicts walking around \(\star \) in p-regime (tree level) from expanding around CFT \(\star \)
- based on scheme-dependent \(\beta \)-function ?
- flavor symmetry at \(\star \) is different from symmetry at \(\star \) ?
dilaton EFT with $\sigma(x)$ dilaton field and $\pi^a(x)$ Goldstone bosons

\[
L = \frac{1}{2} \partial_\mu \chi \partial^\mu \chi - V_d(\chi) + \frac{f_\pi^2}{4} \left(\frac{\chi}{f_d} \right)^2 \text{tr} \left[\partial_\mu \Sigma^\dagger \partial^\mu \Sigma \right] - \frac{f_\pi^2 m_\pi^2}{4} \left(\frac{\chi}{f_d} \right)^y \text{tr} \left(\Sigma + \Sigma^\dagger \right)
\]

$y = 3 - \gamma$ where γ is the mass anomalous dimension

$\chi(x) = f_d e^{\sigma(x)/f_d}$ describes the dilaton field $\sigma(x)$

pion field $\Sigma = e^{i \tau^a \tau^a / f_\pi}$ with τ^a Pauli matrices, tree level pion mass $m_\pi^2 = 2Bm$

\[
V_\sigma = \frac{m_d^2}{2 f_d^2} \left(\frac{\chi^2}{2} - \frac{f_d^2}{2} \right)^2 \quad \text{relevant deformation of IRFP theory}
\]

\[
V_d = \frac{m_d^2}{16 f_d^2} \chi^4 \left(4 \ln \frac{\chi}{f_d} - 1 \right) \quad \text{nearly marginal deformation}
\]

Golterman-Shamir form

\[
M_\pi^2 \cdot F_\pi^{2-y} - 2B_\pi \cdot f_\pi^{(2-y)} \cdot m = 0. \quad \text{general V indep. scaling law}
\]

\[
F_\pi^{(4-y)} \cdot (1 - f_\pi^2 / F_\pi^2) - 2y \cdot n_f f_\pi^{(6-y)} B_\pi / m_d^2 f_d^2 \cdot m = 0. \quad V'_\sigma(\chi = F_d)
\]

\[
3F_\pi^2 / M_\pi^2 - f_\pi^2 / M_\pi^2 - 2M_d^2 / m_d^2 \cdot f_\pi^2 / M_\pi^2 - y(y-1)n_f f_\pi^4 / m_d^2 f_d^2 = 0 \quad V''_\sigma(\chi = M_d)
\]

\[
F_\pi^{(4-y)} \cdot \log(F_\pi / f_\pi) - y \cdot n_f f_\pi^{(6-y)} B_\pi \cdot m / m_d^2 f_d^2 = 0. \quad V'_d(\chi = F_d)
\]

\[
(F_\pi^2 / M_\pi^2) \cdot (3 \log(F_\pi / f_\pi) + 1) - (M_d^2 / m_d^2) \cdot (f_\pi^2 / M_\pi^2) - y(y-1)n_f f_\pi^4 / 2m_d^2 f_d^2 = 0 \quad V''_d(\chi = M_d)
\]

Golterman-Shamir

Appelquist et al. notation

but we do our own IML analysis which is required for any conclusion!

covered in Ricky Wong’s talk:

M_π, F_π, M_d input data at each m

f_π, B, f_d, m_d, y fitted for all m

IML: Implicit Maximum Likelihood test

IML is very different from ML fitting

Perfect fits for V'_σ!

V_d fails!
dilaton EFT with $\sigma(x)$ dilaton field and $\pi^a(x)$ Goldstone bosons

- high resonance spectrum
- scale-independent?
- very low scalar mass?
- sensitive to scalar mass input
- phenomenaology problem?
- the dilaton potential of Shamir-Golterman as tree level theory expanding around IRFP is not working well for sextet data
- drifting γ ignored?
- consistent LatHC analysis for two lattice spacing, with third under construction
- taste breaking issue?

covered in Ricky Wong’s talk
The dilaton potential of Shamir-Golterman as tree level theory expanding around IRFP is not working well for sextet data.

Drifting γ ignored?

Consistent LatHC analysis for two lattice spacings, with third under construction.

Taste breaking issue.

Similar conclusion at $nf=8$ although single lattice spacing very low scalar mass?

Sensitive to scalar mass input.
to reach the chiral regime requires two orders of magnitude drop in fermion mass: switch from p-regime to epsilon regime and related RMT
epsilon regime and RMT

\[\mathcal{L}_\epsilon = \frac{1}{2} \partial_\mu \chi \partial_\mu \chi - V_d(\chi) + \frac{m_\pi^2 f_\pi^2}{4} \left(\frac{\chi}{f_d} \right)^y \text{tr}[\Sigma_0 + \Sigma_0^+] \]

\[\mathcal{L}_\delta = \frac{1}{2} \partial_\mu \chi \partial_\mu \chi - V(\chi) + \frac{f_\pi^2}{4} \left(\frac{\chi}{f_d} \right)^2 \text{tr}[\partial_t \Sigma_0 \partial_t \Sigma_0^+] \]

delta regime m=0
very small fermion mass deformation

epsilon regime with very small fermion mass deformation

new ensembles at equivalent p-regime pion mass \(M_{\pi} \sim 100 \) and volume size \(64^4 \)
epsilon regime and RMT

spectral density $2\pi \rho(\lambda, m)$

Mode number $\nu(\lambda, m)$

Vol=64^4, $\beta=3.25$, $m=0.000010$

65 configurations

quartet eigenvalues

successful testing

ongoing analysis (preliminary results not shown)
Conclusions and outlook

- Idea of walking from complex CFT is attractive, rep independent
- Needs EFT description on several scales, far IR is σ-model
- Does not imply the existence of the dilaton
- EFT of the dilaton remains attractive possibility
- Its tests above the linear σ-regime has issues
- Unified framework for complex CFT and the dilaton?