
Walking, complex CFT, or dilaton 

   Lattice Higgs Collaboration  (LatHC)  

Julius Kuti 

University of California, San Diego 

37th	interna+onal	conference	on	la0ce	field	theory	

Wuhan,   June 16-22, 2019  

Zoltan Fodor, Kieran Holland, JK, Daniel Nogradi, Chik Him Wong



*Tantalizing questions on walking, complex CFT, or dilaton: 

• Emergent light 0++ scalar when β-function is small (near-conformal)? 

• Two different scenarios: complex CFT, or dilaton?    

• IR EFT tests for complex CFT, or dilaton in p-regime  (1/M𝜋 ≪ L) 

• Strategy for EFT in the ε-regime  (1/M𝜋 ≫ L) 
Tantalizing dilaton tests from a near-conformal EFT Julius Kuti and Chik Him Wong

1. Introduction and overview
Tantalus, a king of ancient Phrygia in Greek mythology, made the mistake of gravely offending the gods. As a
punishment, once dead the king was forced to stand in a pool of water, with fruit hanging just over his head. The water
would recede every time the king tried to take a sip, and the fruit would lift away every time he reached to take a bite.

New results are reported from the dilaton effective field theory analysis of a very light scalar
with 0++ quantum numbers in lattice simulations of a strongly coupled gauge theory, defined in the
two-index symmetric fermion representation of the SU(3) color gauge group (one flavor doublet of
massless fermions with sextet color). The sextet model thus defined plays a prominent role in the
near-conformal gauge theory paradigm, perhaps with BSM implications.

In earlier work we discovered the light 0++ scalar as one of the most significant theoretical and
practical consequences of near-conformal infrared behavior in the sextet theory [2–6], radically dif-
ferent from the heavy s -particle of gauge theories far from the conformal window and modeled like
QCD. We investigate the hypothesis of a dilaton inspired EFT in the sextet model with important
caveats in our conclusions. Accordingly, conformal symmetry breaking would be entangled with
chiral symmetry breaking (cSB) driving near-conformal infrared behavior and predicting charac-
teristic dilaton signatures of the light scalar from broken scale invariance when probed on relevant
scales of fermion mass deformations. We find an unexpectedly light dilaton mass in the chiral limit
at md/ fp = 1.56(28), set in units of the pion decay constant fp from a recently reasoned choice of
the dilaton potential in the Lagrangian of the EFT [1]. Subject to further statistical and systematic
tests of continued post-conference analysis, this result is significantly lower than our earlier esti-
mates for the s -particle from less controlled extrapolations to the massless fermion limit of chiral
perturbation theory without characteristic dilaton features.

Two models are identified in Section 2 with significantly smaller step b -functions than QCD
and perhaps with slowly walking scale dependence correlated with dilaton signatures of emergent
light scalars. Before pivoting to the dilaton analysis in Section 4 we present first in Section 3 the
unresolved challenges of the standard cPT analysis and its extensions to the linear s -model. We
also discuss important differences of the sextet dilaton analysis from chiral perturbation theory
(cPT ) and from general extensions of the linear s -model without dilaton signatures. In Section 4
the dilaton EFT is discussed and important predictions are reviewed for hypothesis testing. Results
are reported from the current status of the sextet dilaton analysis. Based on the recently published
data of the LSD collaboration [7] some of our own comparative n f = 8 dilaton analysis is also
reported. New ideas and simulations are briefly presented in Section 5 for reaching much reduced
fermion mass scales in the e-regime of the dilaton EFT. We conclude in Section 6 with some
cautionary remarks and caveats for the outlook.

2. Near-conformal b -functions and the light 0++ scalar
The step b -function of the renormalized gauge coupling is shown from lattice studies in Fig. 1

for two different fermion representations of strongly coupled gauge theories with SU(3) gauge
group [6]. Five b -functions are shown and three of them may exhibit dilaton-like features of their
light scalar. In the fundamental representation, the n f = 4 model in Fig. 1 is like QCD with four
massless fermions. It has the largest b -function [8] and a s -particle with a heavier mass, ms/F ⇠ 6,
set by the scale of the Goldstone decay constant F in the massless fermion limit of cSB [7]. (For
convenience, we will change the notation to F ⌘ fp in all other sections.) At increased flavor
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• nf=10 𝛽-function (new results, no IRFP) 

• nf=12  𝛽-function (new LatHC results, no IRFP, no 𝛄*, walking? 

• nf=13 𝛽-function LatHC reports nf=13 conformal IRFP (?) 

• 5-loop 𝛽-function below CW: a pair of complex conjugate zeros  (avatar of complex CFT ?) 
• our focus is on sextet model,  also considering new nf=12 studies
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Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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near-conformal light Higgs (dilaton-like?) sextet rep

to illustrate: sextet SU(3) color rep

one massless fermion doublet
  

three Goldstone pions 
become longitudinal   
components of weak bosons

composite Higgs mechanism  
scale of Higgs condensate 
~ F=250 GeV  

conflicts with EW constraints?

u
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χSB on Λ~TeV scale

near-conformal (scale invariant)
if Susskind and Weinberg only knew …

Kieran Holland’s talk

“walking” β-function in correlation with emergent light scalar 



• for us two candidate theories remain tantalizing for field 
theory interest and BSM implications of the near-conformal 
walking in correlation with the emergent light scalar  

• sextet model: primary interest well motivated  (case study) 

• nf=12 fundamental rep we continue to consider as perhaps 
the closest to a walking candidate 

• we are curious about nf=8 and nf=10 but should be left for 
the LSD collaboration to understand

“walking” β-function in correlation with emergent light scalar 
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new at nf=12: tuned step β-function from 644 volumes      
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new at nf=12: tuned step β-function from 644 volumes    

• our step β-function is also consistent with the continuous β-function on the GF
    β=t·dg2/dt  we introduced, tested, and used it on the lattice before

• the method was re-introduced at this conference
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L→ 2L  step function renormalization procedure:
νR(λR ) = ν(λ)     λR = Zp

−1 ⋅λ

λL

λ2L

= 2
Zp (g0,L / a)
Zp (g0,2L / a)

    from the matching condition

new: anomalous dimension γ from 
Dirac spectrum       nf=12, sextet 

𝛾 drifting with scale

• staggered formulation is fine

• best choice for BSM explorations 
    in large volumes

• and large volumes are needed!

new at nf=12: anomalous dimension γ from Dirac spectrum
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 two-loop -function from real RG flow passing between two complex CFT  Q=5   

walking and complex CFT Potts model     Q potts spin ~ flavor 
described by CFT  

Q=2 - 4 pair of real CFT with pair of zeros of the beta function 
works for continuous Q in cluster rep 

Q > 4 complex CFT, like Q=5, 6, 7 … 

The Q=5 Potts model is interpreted now as near-conformal and 
walking, controlled by the complex IRFP pair
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Potts model and enables us to extend it to tricrit-
ical exponents as well.
The two-dimensional q-state Potts model is de-

fined by the Hamiltonian'

where the summation is over all nearest-neighbor
pairs on a lattice. Each spin variable s; can as-
sume q values. The transition temperatures of
the Potts model, J, '(q), are known by duality
relations for the square' and triangular lattices. '
As noted above, Baxter' inferred for the square
lattice that the phase transition is first order for
q & q, and continuous for q ~ q„where q, =4. It

D

e6, -3J

FIG. 1. Phase diagram of the Potts lattice gas in the
space of temperature, J, fugacity, e 3, and num-
ber of states, q.

A generalization of the Niemeijer-van Leeuwen renormalization-group transformation
treating disordered cells of spins as vacancies is introduced and applied to the two-dimen-
sional q-state Potts model. Finite-lattice approximations yield the changeover from con-
tinuous to first-order phase transitions predicted by Baxter but not observed in previous
renormalization-group calculations. Exact results are conjectured for the tricritical ex-
ponents of dilute Potts models.

The two-dimensional q-state Potts model' has
been the subject of considerable theoretical inter-
est. It is known that the model is related to other
systems of unusual interest such as the eight-ver-
tex, Ashkin- Teller, and E models. " Using the
latter equivalence, Baxter' showed that the phase BZ e~jt

transition of the Potts model is continuous for q
& q, and first order for q & q, with q, =4. Numer-
ous position-space renormalization-group (RG)
methods have been applied to this problem and
have failed to detect these first-order transi-
tions." This deficiency is intriguing because
the same calculations give accurate critical ex-
ponents for q & 4.4 Furthermore, first-order
transitions have been successfully described by
RG methods in other contexts. ' The failure indi-
cates either an inherent difficulty with the posi-
tion-space methods or an incomplete realization
of RG ideas by these calculations. In this Letter
we demonstrate the latter to be the case by gen-
eralizing the Neimeijer-van Leeuwen (NvL) meth-
od' and applying it to the ferromagnetic q-state
Potts model. The new, physically motivated fea-
ture of the RG transformation is that disordered
configurations of the spins in a cell are assigned
to a special cell state corresponding to a vacancy.
This RG necessitates an extension of the Hamil-
tonian space to include lattice-gas terms. We ob-
tain a critical value q, such that transitions are
continuous for q ~ q, and first order for q& q,.
For the simplest approximation q, = 4.7. Figure
1 shows the topology of the resulting phase dia-
gram. This topology supports a recent conjec-
ture' concerning the critical exponents of the
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J
H
E
P
1
0
(
2
0
1
8
)
1
0
8

Q 5 6 7 8 9 10

ξ 2512.2 158.9 48.1 23.9 14.9 10.6

Table 1. The 2d Potts model correlation length on the square lattice at the first-order phase
transition for Q = 5 - 10, computed from [24], eq. (4.46).

The fixed point dimension of ε is then given by

∆ε = 2− (a+ bλ±) +O(δ) . (3.14)

Demanding agreement with (3.11) allows us to fix the two constants a, b:

a =
3

2
, b =

3

4
. (3.15)

The RG equation (3.13) is also important when studying the WFO regime y > 0. The

running of φ must be taken into account when computing the latent heat (which is the

derivative of free energy w.r.t. φ). The computation of [7, 8] finds an exponentially small

latent heat of the same form as (3.7). Precise agreement in the exponent is obtained for

a = 3/2 as in (3.15), providing yet another consistency check of this picture.

3.5 Lessons and questions

We see that the 2d Potts model presents a remarkable opportunity for testing the idea

of walking. Not only some aspects of it are exactly solvable, it’s also relatively easy

to study via Monte Carlo simulations. The key assumption is that the same RG equa-

tions (2.3), (3.13) apply on both sides of Q = Qc provided that we make the parameter

y depend on Q − Qc as in (3.9). Coefficients in these equations can be fixed demanding

the consistency with the exactly known critical exponents at Q < Qc. Solving the same

equation for Q > Qc, one obtains approximate results for the correlation length and latent

heat in the phase where the transition is weakly first-order, which can be checked against

the exact solution on the lattice.

What is the range of Q for which walking behavior persists? Looking at table 1, we

see large correlation lengths up to Q ! 10. Eq. (3.8) works pretty well in this whole range,

provided that one allows the coefficient ξ0 to vary by 30%, from 0.13 to 0.19 (while ξ itself

varies by factor 250). Naively this is puzzling, as it may seem that the expansion in Q−Qc

has an unexpectedly large range of validity. However, as mentioned in section 2.2, the true

criterion for walking should involve nonperturbative information about complex CFTs,

rather than Q − Qc. See section 6.3 for a general discussion and [1] for details specific to

the 2d Potts.

4 Walking in high energy physics: 4d gauge theories

Slowly running or walking coupling was first introduced in particle physics in the context

of technicolor models of electroweak symmetry breaking [2–4]. These models later received

the name “walking technicolor” (WTC). Here we focus on the simplest setup where walking

– 14 –

• Q = 5 very large scale separation without tuning 

• slowly drifting scale-dependence in critical exponents is calculable: 
     
• central charge 

• flow in far infrared is the first order transition point  
    (like 𝛘SB in gauge theories) 

cdrift (L) = cR −α tan(γ log
L
L0
)+ ...
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J
H
E
P
1
0
(
2
0
1
8
)
1
0
8

Q 5 6 7 8 9 10

ξ 2512.2 158.9 48.1 23.9 14.9 10.6

Table 1. The 2d Potts model correlation length on the square lattice at the first-order phase
transition for Q = 5 - 10, computed from [24], eq. (4.46).

The fixed point dimension of ε is then given by

∆ε = 2− (a+ bλ±) +O(δ) . (3.14)

Demanding agreement with (3.11) allows us to fix the two constants a, b:

a =
3

2
, b =

3

4
. (3.15)

The RG equation (3.13) is also important when studying the WFO regime y > 0. The
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4 Walking in high energy physics: 4d gauge theories

Slowly running or walking coupling was first introduced in particle physics in the context

of technicolor models of electroweak symmetry breaking [2–4]. These models later received

the name “walking technicolor” (WTC). Here we focus on the simplest setup where walking
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but walking from complex CFT emerged first in 4d gauge theories



with v > 0 by unitarity, and integrating in the shell 1=!<
jx! yj< 1=!0, it then follows that the coupling f gets
renormalized by the relation

fð!Þ ! v

2"! d
f2ð!Þð!2"!d !!02"!dÞ ¼ fð!0Þ; (5)

plus subleading corrections in 1=N. By differentiating with
respect to !0 and taking the limit !0 ! !, we obtain the
beta function at leading order in 1=N

!
d #f

d!
¼ v #f2 þ ð2"! dÞ #f: (6)

Recalling that v ¼ OðNÞ, we recover the consistency con-
dition f ¼ Oð1=NÞ.

In a similar way one can see that the coupling f renorm-
alizes the quadratic part in O hidden in the undeformed
action [16]. The new divergence can be reabsorbed into a
redefinition of the operator, and leads to the emergence of
an Oð1Þ anomalous dimension !f ¼ v #f. The total dimen-
sion of the operator O is thus found to be

"O ¼ "þ v #f: (7)

We emphasize that (6) and (7) have been derived at leading
order in 1=N, but are valid at all orders in ", Nf.

Before exploring the phase structure of (1), we would
like to stress that the above results can be straightforwardly
generalized to a larger class of models in which the un-
deformed theory is not an actual CFT, provided the leading
2-point function for the operator O is of the form (4). This
is precisely what happens in orbifold deformations of
N ¼ 4 SYM at leading order in 1=N, for example, in
which the undeformed theory cannot be regarded as a well
defined field theory because of the necessity of the counter-
term fO2. The above RG study should be modified to
account for the possibility that the undeformed, single-
trace theory generates terms / ð!d!2" !!0d!2"ÞO2 in
the effective theory, where the factor is generally a function
of ". By introducing this contribution in (5), the beta
function (6) generalizes to

!
d #f

d!
¼ v #f2 þ ð2"! dÞ #fþ a; (8)

where a, v, " are functions of " and can be regarded as
constants under our approximations. In particular, the
anomalous dimension of the single-trace operator O al-
ready contains " corrections in (4), and the total dimension
in the presence of the deformation is again given by (7).

Equations (8) and (7) agree with the 1-loop results of [5]
and with the planar analysis of [6]. In a subsequent pub-
lication we will rederive these results using the gauge/
gravity correspondence [17].

B. Phases of the deformed theory

An inspection of (6) reveals that the theory (1) admits
two fixed points, an IR and an UV fixed point.
Furthermore, from (7) we see that the dimension of the
single-trace operator is "O ¼ " at the trivial fixed point,
while "O ¼ d! " at the nontrivial fixed point.
As soon as we allow a nonzero a, the picture can

drastically change. The effect of a nontrivial a has been
studied in some details in [5,6], and more recently in [13],
and it is schematically shown in Fig. 1. Let us analyze this
generic situation.
If a ! 0 the beta function (8) admits real zeros only if

D ¼ ð"! d=2Þ2 ! va & 0. In this latter case we find two
fixed points given by v #f' ¼ d=2!" '

ffiffiffiffi
D

p
. By evaluat-

ing the first derivative of the beta function at the fixed
points, we obtain the critical exponents

#0
#f
j' ¼ ' 2

ffiffiffiffi
D

p
; (9)

and identify #f! as an UV attractive and #fþ as an IR
attractive fixed point. At #f ¼ #f' , the dimension of the
operator O is

"' ¼ d

2
'

ffiffiffiffi
D

p
; (10)

and satisfies the sum rule "! þ "þ ¼ d. Notice that in
order for the flow to be consistent with the unitarity bound
on the dimension of the scalar operator, namely " & d!2

2 ,

we should further require that 0 (
ffiffiffiffi
D

p
( 1.

The renormalized coupling reads

#fð!Þ ! #f! ¼
#fþ ! #f!

1þ ð!!0
Þ2

ffiffiffi
D

p ; (11)

where generally #fþ & #f!. For D> 0 we thus identify two
second-order phase transitions as a function of the tem-
perature #f. If #f! < #f < #fþ and 0<D< 1, the theory

IRUV

FIG. 1 (color online). Schematic plot of the beta function (8)
as a function of the coupling #f for three nontrivial values of a. As
a increases (lower line to upper line) the (UV and IR) fixed
points merge and then disappear.
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We discuss in the planar approximation the effect of double-trace deformations on conformal field

theories. We show that this large class of models posses a conformal window describing a nontrivial flow

between two fixed points of the renormalization group and reveal the presence of a resonance which we

associate to the remnant of a dilaton pole. As the conformal window shrinks to zero measure, the theory

undergoes a conformal phase transition separating a symmetric from a nonsymmetric phase. The recently

conjectured strongly coupled branch of nonsupersymmetric, non-Abelian gauge theories with a large

number of flavors is analyzed in light of these results, and a model for the strong branch is proposed. Some

phenomenological implications in the context of unparticle physics are also emphasized.
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I. INTRODUCTION

Conformal symmetry is a powerful tool for the particle
physicist. On a genuinely theoretical level, the role of
conformal symmetry is crucial when dealing with the
quantum behavior of a particle theory. In fact, our under-
standing of quantum field theories is mostly entirely based
on the simple scaling laws that these systems exhibit in the
vicinity of fixed points of the renormalization group. This
is at the heart of ordinary perturbation theory, which allows
us to study the quantum properties of a system sufficiently
close to its Gaussian fixed point. A more ambitious aim
would be the analysis of deformations of nontrivial con-
formal field theories, which would eventually lead to a
deeper understanding of the strongly coupled regime of a
field theory.

On a more phenomenological level, the importance of
the conformal symmetry in formulating realistic models of
dynamical electroweak symmetry breaking was empha-
sized time ago by Holdom [1]. These considerations found
a concrete realization in the walking technicolor paradigm,
which is one of the most attractive scenarios for physics
beyond the standard model.

In this paper we wish to address both phenomenological
and theoretical issues in a simple, tractable framework.

The prototype of any four-dimensional conformal field
theory (CFT) isN ¼ 4 SYM. Because of its large amount
of supersymmetry, it is hard to imagine a direct application
in the context of particle physics: nonsupersymmetric
CFT’s would be much more desirable. Attempts in this
direction have been recently guided by the gauge/gravity
correspondence, and are typically based on the idea of
deforming the bulk AdS5 " S5 geometry in such a way
that the AdS5 factor survives [2,3]. Orbifold projections of
N ¼ 4 SYM are explicit realizations of this program. In
this case, one introduces an orbifold symmetry that
projects out part of the original supersymmetric field con-

tent, thus (partially or totally) breaking supersymmetry.
The resulting theory acquires the following structure:

L CFT þ
f

2
Oy

ijO
ij: (1)

Here, LCFT denotes the SUðNÞ gauge theory directly in-
herited by N ¼ 4 SYM, whereas Oij is a gauge singlet
scalar typically charged under some internal symmetries
(the ij indices above). An analysis of these models reveals
that LCFT preserves the conformal symmetry of the origi-
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the lack of supersymmetry implies the unavoidable emer-
gence of counterterms of the form fO2

ij, which introduce a

conformal anomaly already at leading order [5,6]. The
resulting picture suggests that the AdS5 factor of the dual
string theory becomes generally unstable as soon as super-
symmetry is broken [7,8].
Similar conclusions generalize to any theory admitting a

structure of the form (1), withLCFT being a (large N) CFT.
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Nambu-Jona-Lasinio model for chiral symmetry breaking
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(1). We will see that the dynamics admits a flavor non-
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(NJL) model, and then the flavor symmetry SUðNfÞL #
SUðNfÞR is broken to SUðNfÞV .

Now we shall derive the ERG equations for this system.
By expanding theWetterich equation by operators, we may
obtain the RG equations for various effective couplings.
The trace form of the quantum corrections in the ERG
equation given by Eq. (2) implies that they are just one-
loop ones, although the vertices include nonrenormalizable
interactions. Therefore, we may calculate the RG equations
for the effective couplings by evaluating various one-loop
diagrams with shell integration for the loop momentum.

For the four-fermi couplings, the one-loop diagrams are
represented as in Fig. 3, where the four-fermi vertices
represent any of the operators given by Eqs. (17)–(20).
The wavy line stands for the gauge propagator. Thus we
need to calculate rather many diagrams. So we shall sum-
marize details of the calculations in Appendix B and
present only the results here.

We use the Landau gauge propagator and evaluate the
loop integrations in the sharp cutoff limit. The reason
to adopt the Landau gauge is that we neglect the wave
function renormalization of the fermion fields, which van-
ishes in the Landau gauge. We also use gi ¼ Gi=4!

2ði ¼
S; V; V1; V2Þ and "g ¼ g2=ð4!Þ2. Then the resultant RG
equations are found to be

!
dgS
d!

¼ 2gS % 2Ncg
2
S þ 2NfgSgV þ 6gSgV1

þ 2gSgV2 % 12C2ðFÞgS"g þ 12gV1"g

% 3

2

!
3Nc %

4

Nc
% 1

N2
c

"
"2
g; (22)

!
dgV
d!

¼ 2gV þ ðNf=4Þg2S þ ðNc þ NfÞg2V % 6gVgV2

% 6

Nc
ðgV þ gV2Þ"g %

3

4

!
Nc %

8

Nc
þ 3

N2
c

"
"2
g;

(23)

!
dgV1
d!

¼ 2gV1 % ð1=4Þg2S % gSgV % 3g2V1 % NfgSgV2

þ 2ðNc þ NfÞgVgV1 þ 2ðNcNf þ 1ÞgV1gV2

þ 6

Nc
gV1"g þ

3

4

!
1þ 3

N2
c

"
"2
g; (24)

!
dgV2
d!

¼ 2gV2 % 3g2V % NcNfg
2
V1 þ ðNcNf % 2Þg2V2

% NfgSgV1 þ 2ðNcNf þ 1ÞgVgV2

þ 6ðgV þ gV2Þ"g %
3

4

!
3þ 1

N2
c

"
"2
g; (25)

where C2ðFÞ denotes the quadratic Casimir of color re-
presentation of the fermions and is given explicitly by
ðN2

c % 1Þ=2Nc. In deriving these equations, we do not
make further approximations and, therefore, they are valid
for any Nc and Nf.
We need to solve these differential equations coupled

with the RG equation for the gauge coupling. Therefore,
the RG flows are given in the five-dimensional parameter
space and the flow diagram becomes rather complicated.
Since our present purpose is qualitative understanding of
the nonperturbative RT and the beta function, let us coin-
cide the RG equations in the large Nc and Nf limit. This
limit is taken by rescaling as

NcgSðVÞ ! gSðVÞ; (26)

N2
cgV1ðV2Þ ! gV1ðV2Þ; (27)

Nc"g ! "g; (28)

with keeping the ratio r ¼ Nf=Nc. Then it is seen that the
first two equations (22) and (23) are reduced to [12]

!
dgS
d!

¼ 2gS % 2g2S þ 2rgSgV % 6gS"g %
9

2
"2
g; (29)

!
dgV
d!

¼ 2gV þ r

4
g2S þ ð1þ rÞg2V % 3

4
"2
g: (30)

It is noted that four-fermi couplings gV1 and gV2 decouple
from the above equations. Therefore, we may solve only
three equations for the couplings gS, gV and "g in the large
Nc and Nf limit.
Next we consider the RG equation for the gauge cou-

pling. The two-loop beta function for the SUðNcÞ QCD is
given by

#½2(
g ) $

d"g

d$
¼ %2b0"

2
g % 2b1"

3
g; (31)

where "g ¼ g2=ð4!Þ2 and

b0 ¼
11

3
Nc %

2

3
Nf; (32)

b1 ¼
34

3
N2

c % Nf

!
N2

c % 1

Nc
þ 10

3
Nc

"
: (33)

Here we intend to incorporate nonperturbative corrections
into the gauge beta function in the same way as performed
for the scalar field theory in Sec. II. It is thought that it is
important to find dependence on the four-fermi couplings

FIG. 3 (color online). The RG corrections for the effective
four-fermi couplings are illustrated diagrammatically. The bold
and wavy lines represent propagators of the chiral fermions and
the gauge bosons, respectively.
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physical quantities to be measured. Especially, the eigen-
values of the RG flow equations linearized around the fixed
point are nothing but the scaling dimensions of the four-
fermi operators. We are interested in the most relevant
dimension, since it shows the (ir)relevance of the four-
fermi operators at the fixed point. Figure 8 shows the
dimensions !4f evaluated at the UV (blue) and the IR
(red) fixed points in the cases of various flavor numbers
[11– 13]. The scaling dimension obtained in the large Nc

and ladder approximation is also shown for comparison. It
is seen that the dimensions are almost the same as those
evaluated in the ladder approximation. It is noted that the
dimension should be 4 exactly at the edge of the conformal
window, since the four-fermi operator becomes marginal
by fixed point merger there.

In the present scheme, the anomalous dimension of
fermion mass is simply represented by the diagrams given
in Fig. 9 [5,12]. The crossed vertex stands for the mass
insertion. We can immediately evaluate these corrections at
the fixed points and the anomalous dimension of the fer-
mion mass operator ! "c c and it is found to be

! "c c ¼"6C2ðFÞ"g"2NcgSþgV1’"3"g"2gS: (40)

The scaling dimensions of the fermion mass operator
! "c c ¼ 3þ ! "c c are shown in Fig. 10 for various flavor

numbers in the conformal window. We also present the
results obtained in the large Nc and ladder approximation
for comparison. It is found that the scaling dimensions at
the UV fixed points differ from the ladder results signifi-
cantly, while there is not much differences at the IR fixed
points [12]. It is noted that sum of the anomalous dimen-
sions at the IR fixed point and the UV fixed point is more
than the value, "2, which is expected in the large Nc

analysis [35]. This is because the corrections taken in the
RG flow equations contain not only planer diagrams but
also nonplaner ones due to large Nf contributions, which
influence the anomalous dimension significantly.
Next we consider change in behavior of the RG flows

near the lower edge of the conformal window. In Fig. 11
and 12, the RG flows of SUð3Þgauge theories are shown in
the case with Nf ¼ 13 and Nf ¼ 12, respectively. The
fixed points are shown by (red) points. For Nf ¼ 13, the
theory lies within the conformal window and the UV and
the IR fixed points with nontrivial gauge couplings exist.
Meanwhile, the theory with Nf ¼ 12 is slightly out of the
conformal window and these fixed points have annihilated
in pair.
First, let us discuss the RG flows of the theories in the

conformal window. As seen in Fig. 11, there is the phase
boundary and the chiral symmetry is broken in the upper
region. The flows in the lower symmetric region run into
the IR fixed point. Then, the flows converge towards a line
connecting three fixed points; the trivial fixed point, the IR
fixed point and the UV fixed point. This line is nothing but
the renormalized trajectory. The flow starting from the UV
fixed point for the IR one corresponds to an asymptotically
safe theory, while the flow approaching the IR fixed point
from the trivial fixed point corresponds to an asymptoti-
cally free theory. The both theories can be defined as the
continuum limit and, therefore, renormalizable.
On the other hand, it is seen in Fig. 12 that the nontrivial

fixed points and the phase boundary disappear just below
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FIG. 8 (color online). Scaling dimensions of the most relevant
four-fermion operator at the IR and the UV fixed points in the
conformal window.

FIG. 9 (color online). Diagrammatic representation for the
anomalous dimension of fermion mass operator. The crossed
vertex stands for the mass insertion.
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FIG. 10 (color online). Scaling dimensions of the fermion
mass operator at the IR and the UV fixed points in the conformal
window.
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numbers in the conformal window. We also present the
results obtained in the large Nc and ladder approximation
for comparison. It is found that the scaling dimensions at
the UV fixed points differ from the ladder results signifi-
cantly, while there is not much differences at the IR fixed
points [12]. It is noted that sum of the anomalous dimen-
sions at the IR fixed point and the UV fixed point is more
than the value, "2, which is expected in the large Nc

analysis [35]. This is because the corrections taken in the
RG flow equations contain not only planer diagrams but
also nonplaner ones due to large Nf contributions, which
influence the anomalous dimension significantly.
Next we consider change in behavior of the RG flows

near the lower edge of the conformal window. In Fig. 11
and 12, the RG flows of SUð3Þgauge theories are shown in
the case with Nf ¼ 13 and Nf ¼ 12, respectively. The
fixed points are shown by (red) points. For Nf ¼ 13, the
theory lies within the conformal window and the UV and
the IR fixed points with nontrivial gauge couplings exist.
Meanwhile, the theory with Nf ¼ 12 is slightly out of the
conformal window and these fixed points have annihilated
in pair.
First, let us discuss the RG flows of the theories in the

conformal window. As seen in Fig. 11, there is the phase
boundary and the chiral symmetry is broken in the upper
region. The flows in the lower symmetric region run into
the IR fixed point. Then, the flows converge towards a line
connecting three fixed points; the trivial fixed point, the IR
fixed point and the UV fixed point. This line is nothing but
the renormalized trajectory. The flow starting from the UV
fixed point for the IR one corresponds to an asymptotically
safe theory, while the flow approaching the IR fixed point
from the trivial fixed point corresponds to an asymptoti-
cally free theory. The both theories can be defined as the
continuum limit and, therefore, renormalizable.
On the other hand, it is seen in Fig. 12 that the nontrivial

fixed points and the phase boundary disappear just below
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vertex stands for the mass insertion.
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with v > 0 by unitarity, and integrating in the shell 1=!<
jx! yj< 1=!0, it then follows that the coupling f gets
renormalized by the relation

fð!Þ ! v

2"! d
f2ð!Þð!2"!d !!02"!dÞ ¼ fð!0Þ; (5)

plus subleading corrections in 1=N. By differentiating with
respect to !0 and taking the limit !0 ! !, we obtain the
beta function at leading order in 1=N

!
d #f

d!
¼ v #f2 þ ð2"! dÞ #f: (6)

Recalling that v ¼ OðNÞ, we recover the consistency con-
dition f ¼ Oð1=NÞ.

In a similar way one can see that the coupling f renorm-
alizes the quadratic part in O hidden in the undeformed
action [16]. The new divergence can be reabsorbed into a
redefinition of the operator, and leads to the emergence of
an Oð1Þ anomalous dimension !f ¼ v #f. The total dimen-
sion of the operator O is thus found to be

"O ¼ "þ v #f: (7)

We emphasize that (6) and (7) have been derived at leading
order in 1=N, but are valid at all orders in ", Nf.

Before exploring the phase structure of (1), we would
like to stress that the above results can be straightforwardly
generalized to a larger class of models in which the un-
deformed theory is not an actual CFT, provided the leading
2-point function for the operator O is of the form (4). This
is precisely what happens in orbifold deformations of
N ¼ 4 SYM at leading order in 1=N, for example, in
which the undeformed theory cannot be regarded as a well
defined field theory because of the necessity of the counter-
term fO2. The above RG study should be modified to
account for the possibility that the undeformed, single-
trace theory generates terms / ð!d!2" !!0d!2"ÞO2 in
the effective theory, where the factor is generally a function
of ". By introducing this contribution in (5), the beta
function (6) generalizes to

!
d #f

d!
¼ v #f2 þ ð2"! dÞ #fþ a; (8)

where a, v, " are functions of " and can be regarded as
constants under our approximations. In particular, the
anomalous dimension of the single-trace operator O al-
ready contains " corrections in (4), and the total dimension
in the presence of the deformation is again given by (7).

Equations (8) and (7) agree with the 1-loop results of [5]
and with the planar analysis of [6]. In a subsequent pub-
lication we will rederive these results using the gauge/
gravity correspondence [17].

B. Phases of the deformed theory

An inspection of (6) reveals that the theory (1) admits
two fixed points, an IR and an UV fixed point.
Furthermore, from (7) we see that the dimension of the
single-trace operator is "O ¼ " at the trivial fixed point,
while "O ¼ d! " at the nontrivial fixed point.
As soon as we allow a nonzero a, the picture can

drastically change. The effect of a nontrivial a has been
studied in some details in [5,6], and more recently in [13],
and it is schematically shown in Fig. 1. Let us analyze this
generic situation.
If a ! 0 the beta function (8) admits real zeros only if

D ¼ ð"! d=2Þ2 ! va & 0. In this latter case we find two
fixed points given by v #f' ¼ d=2!" '

ffiffiffiffi
D

p
. By evaluat-

ing the first derivative of the beta function at the fixed
points, we obtain the critical exponents

#0
#f
j' ¼ ' 2

ffiffiffiffi
D

p
; (9)

and identify #f! as an UV attractive and #fþ as an IR
attractive fixed point. At #f ¼ #f' , the dimension of the
operator O is

"' ¼ d

2
'

ffiffiffiffi
D

p
; (10)

and satisfies the sum rule "! þ "þ ¼ d. Notice that in
order for the flow to be consistent with the unitarity bound
on the dimension of the scalar operator, namely " & d!2

2 ,

we should further require that 0 (
ffiffiffiffi
D

p
( 1.

The renormalized coupling reads

#fð!Þ ! #f! ¼
#fþ ! #f!

1þ ð!!0
Þ2

ffiffiffi
D

p ; (11)

where generally #fþ & #f!. For D> 0 we thus identify two
second-order phase transitions as a function of the tem-
perature #f. If #f! < #f < #fþ and 0<D< 1, the theory

IRUV

FIG. 1 (color online). Schematic plot of the beta function (8)
as a function of the coupling #f for three nontrivial values of a. As
a increases (lower line to upper line) the (UV and IR) fixed
points merge and then disappear.
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and with the planar analysis of [6]. In a subsequent pub-
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with v > 0 by unitarity, and integrating in the shell 1=!<
jx! yj< 1=!0, it then follows that the coupling f gets
renormalized by the relation

fð!Þ ! v

2"! d
f2ð!Þð!2"!d !!02"!dÞ ¼ fð!0Þ; (5)

plus subleading corrections in 1=N. By differentiating with
respect to !0 and taking the limit !0 ! !, we obtain the
beta function at leading order in 1=N

!
d #f

d!
¼ v #f2 þ ð2"! dÞ #f: (6)

Recalling that v ¼ OðNÞ, we recover the consistency con-
dition f ¼ Oð1=NÞ.

In a similar way one can see that the coupling f renorm-
alizes the quadratic part in O hidden in the undeformed
action [16]. The new divergence can be reabsorbed into a
redefinition of the operator, and leads to the emergence of
an Oð1Þ anomalous dimension !f ¼ v #f. The total dimen-
sion of the operator O is thus found to be

"O ¼ "þ v #f: (7)

We emphasize that (6) and (7) have been derived at leading
order in 1=N, but are valid at all orders in ", Nf.

Before exploring the phase structure of (1), we would
like to stress that the above results can be straightforwardly
generalized to a larger class of models in which the un-
deformed theory is not an actual CFT, provided the leading
2-point function for the operator O is of the form (4). This
is precisely what happens in orbifold deformations of
N ¼ 4 SYM at leading order in 1=N, for example, in
which the undeformed theory cannot be regarded as a well
defined field theory because of the necessity of the counter-
term fO2. The above RG study should be modified to
account for the possibility that the undeformed, single-
trace theory generates terms / ð!d!2" !!0d!2"ÞO2 in
the effective theory, where the factor is generally a function
of ". By introducing this contribution in (5), the beta
function (6) generalizes to
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where a, v, " are functions of " and can be regarded as
constants under our approximations. In particular, the
anomalous dimension of the single-trace operator O al-
ready contains " corrections in (4), and the total dimension
in the presence of the deformation is again given by (7).

Equations (8) and (7) agree with the 1-loop results of [5]
and with the planar analysis of [6]. In a subsequent pub-
lication we will rederive these results using the gauge/
gravity correspondence [17].

B. Phases of the deformed theory

An inspection of (6) reveals that the theory (1) admits
two fixed points, an IR and an UV fixed point.
Furthermore, from (7) we see that the dimension of the
single-trace operator is "O ¼ " at the trivial fixed point,
while "O ¼ d! " at the nontrivial fixed point.
As soon as we allow a nonzero a, the picture can

drastically change. The effect of a nontrivial a has been
studied in some details in [5,6], and more recently in [13],
and it is schematically shown in Fig. 1. Let us analyze this
generic situation.
If a ! 0 the beta function (8) admits real zeros only if
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as a function of the coupling #f for three nontrivial values of a. As
a increases (lower line to upper line) the (UV and IR) fixed
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We discuss in the planar approximation the effect of double-trace deformations on conformal field

theories. We show that this large class of models posses a conformal window describing a nontrivial flow

between two fixed points of the renormalization group and reveal the presence of a resonance which we

associate to the remnant of a dilaton pole. As the conformal window shrinks to zero measure, the theory

undergoes a conformal phase transition separating a symmetric from a nonsymmetric phase. The recently

conjectured strongly coupled branch of nonsupersymmetric, non-Abelian gauge theories with a large

number of flavors is analyzed in light of these results, and a model for the strong branch is proposed. Some

phenomenological implications in the context of unparticle physics are also emphasized.
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I. INTRODUCTION

Conformal symmetry is a powerful tool for the particle
physicist. On a genuinely theoretical level, the role of
conformal symmetry is crucial when dealing with the
quantum behavior of a particle theory. In fact, our under-
standing of quantum field theories is mostly entirely based
on the simple scaling laws that these systems exhibit in the
vicinity of fixed points of the renormalization group. This
is at the heart of ordinary perturbation theory, which allows
us to study the quantum properties of a system sufficiently
close to its Gaussian fixed point. A more ambitious aim
would be the analysis of deformations of nontrivial con-
formal field theories, which would eventually lead to a
deeper understanding of the strongly coupled regime of a
field theory.

On a more phenomenological level, the importance of
the conformal symmetry in formulating realistic models of
dynamical electroweak symmetry breaking was empha-
sized time ago by Holdom [1]. These considerations found
a concrete realization in the walking technicolor paradigm,
which is one of the most attractive scenarios for physics
beyond the standard model.

In this paper we wish to address both phenomenological
and theoretical issues in a simple, tractable framework.

The prototype of any four-dimensional conformal field
theory (CFT) isN ¼ 4 SYM. Because of its large amount
of supersymmetry, it is hard to imagine a direct application
in the context of particle physics: nonsupersymmetric
CFT’s would be much more desirable. Attempts in this
direction have been recently guided by the gauge/gravity
correspondence, and are typically based on the idea of
deforming the bulk AdS5 " S5 geometry in such a way
that the AdS5 factor survives [2,3]. Orbifold projections of
N ¼ 4 SYM are explicit realizations of this program. In
this case, one introduces an orbifold symmetry that
projects out part of the original supersymmetric field con-

tent, thus (partially or totally) breaking supersymmetry.
The resulting theory acquires the following structure:

L CFT þ
f

2
Oy

ijO
ij: (1)

Here, LCFT denotes the SUðNÞ gauge theory directly in-
herited by N ¼ 4 SYM, whereas Oij is a gauge singlet
scalar typically charged under some internal symmetries
(the ij indices above). An analysis of these models reveals
that LCFT preserves the conformal symmetry of the origi-
nal supersymmetric theory at leading order in 1=N [4], but
the lack of supersymmetry implies the unavoidable emer-
gence of counterterms of the form fO2

ij, which introduce a

conformal anomaly already at leading order [5,6]. The
resulting picture suggests that the AdS5 factor of the dual
string theory becomes generally unstable as soon as super-
symmetry is broken [7,8].
Similar conclusions generalize to any theory admitting a

structure of the form (1), withLCFT being a (large N) CFT.
Examples belonging to this class include—in addition to
the already mentioned orbifold projections of N ¼ 4
SYM—many known quantum field theories, such as the
(massless) sigma model and the Gross-Neveu model [9],
and have interesting applications in particle physics. The
Nambu-Jona-Lasinio model for chiral symmetry breaking
[10] represents perhaps the most popular example. A less
celebrated application was proposed by Strassler [11], who
showed that the theory (1), in which LCFT may be identi-
fied withN ¼ 4 SYM, is one of a few known examples of
nonsupersymmetric models admitting naturally light sca-
lars, and hence may represent an interesting laboratory for
the model builder.
Our aim is to address the model-independent features

encoded in the general structure (1). In Sec. II we will
discuss the beta function for f at leading order in the planar
approximation and analyze the phase structure hidden in
(1). We will see that the dynamics admits a flavor non-
symmetric and a flavor symmetric phase. The symmetric
phase is particularly interesting, as it manifests two distinct*vecchi@lanl.gov
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(NJL) model, and then the flavor symmetry SUðNfÞL #
SUðNfÞR is broken to SUðNfÞV .

Now we shall derive the ERG equations for this system.
By expanding theWetterich equation by operators, we may
obtain the RG equations for various effective couplings.
The trace form of the quantum corrections in the ERG
equation given by Eq. (2) implies that they are just one-
loop ones, although the vertices include nonrenormalizable
interactions. Therefore, we may calculate the RG equations
for the effective couplings by evaluating various one-loop
diagrams with shell integration for the loop momentum.

For the four-fermi couplings, the one-loop diagrams are
represented as in Fig. 3, where the four-fermi vertices
represent any of the operators given by Eqs. (17)–(20).
The wavy line stands for the gauge propagator. Thus we
need to calculate rather many diagrams. So we shall sum-
marize details of the calculations in Appendix B and
present only the results here.

We use the Landau gauge propagator and evaluate the
loop integrations in the sharp cutoff limit. The reason
to adopt the Landau gauge is that we neglect the wave
function renormalization of the fermion fields, which van-
ishes in the Landau gauge. We also use gi ¼ Gi=4!

2ði ¼
S; V; V1; V2Þ and "g ¼ g2=ð4!Þ2. Then the resultant RG
equations are found to be

!
dgS
d!

¼ 2gS % 2Ncg
2
S þ 2NfgSgV þ 6gSgV1

þ 2gSgV2 % 12C2ðFÞgS"g þ 12gV1"g

% 3

2

!
3Nc %

4

Nc
% 1

N2
c

"
"2
g; (22)

!
dgV
d!

¼ 2gV þ ðNf=4Þg2S þ ðNc þ NfÞg2V % 6gVgV2

% 6

Nc
ðgV þ gV2Þ"g %

3

4

!
Nc %

8

Nc
þ 3

N2
c

"
"2
g;

(23)

!
dgV1
d!

¼ 2gV1 % ð1=4Þg2S % gSgV % 3g2V1 % NfgSgV2

þ 2ðNc þ NfÞgVgV1 þ 2ðNcNf þ 1ÞgV1gV2

þ 6

Nc
gV1"g þ

3

4

!
1þ 3

N2
c

"
"2
g; (24)

!
dgV2
d!

¼ 2gV2 % 3g2V % NcNfg
2
V1 þ ðNcNf % 2Þg2V2

% NfgSgV1 þ 2ðNcNf þ 1ÞgVgV2

þ 6ðgV þ gV2Þ"g %
3

4

!
3þ 1

N2
c

"
"2
g; (25)

where C2ðFÞ denotes the quadratic Casimir of color re-
presentation of the fermions and is given explicitly by
ðN2

c % 1Þ=2Nc. In deriving these equations, we do not
make further approximations and, therefore, they are valid
for any Nc and Nf.
We need to solve these differential equations coupled

with the RG equation for the gauge coupling. Therefore,
the RG flows are given in the five-dimensional parameter
space and the flow diagram becomes rather complicated.
Since our present purpose is qualitative understanding of
the nonperturbative RT and the beta function, let us coin-
cide the RG equations in the large Nc and Nf limit. This
limit is taken by rescaling as

NcgSðVÞ ! gSðVÞ; (26)

N2
cgV1ðV2Þ ! gV1ðV2Þ; (27)

Nc"g ! "g; (28)

with keeping the ratio r ¼ Nf=Nc. Then it is seen that the
first two equations (22) and (23) are reduced to [12]

!
dgS
d!

¼ 2gS % 2g2S þ 2rgSgV % 6gS"g %
9

2
"2
g; (29)

!
dgV
d!

¼ 2gV þ r

4
g2S þ ð1þ rÞg2V % 3

4
"2
g: (30)

It is noted that four-fermi couplings gV1 and gV2 decouple
from the above equations. Therefore, we may solve only
three equations for the couplings gS, gV and "g in the large
Nc and Nf limit.
Next we consider the RG equation for the gauge cou-

pling. The two-loop beta function for the SUðNcÞ QCD is
given by

#½2(
g ) $

d"g

d$
¼ %2b0"

2
g % 2b1"

3
g; (31)

where "g ¼ g2=ð4!Þ2 and

b0 ¼
11

3
Nc %

2

3
Nf; (32)

b1 ¼
34

3
N2

c % Nf

!
N2

c % 1

Nc
þ 10

3
Nc

"
: (33)

Here we intend to incorporate nonperturbative corrections
into the gauge beta function in the same way as performed
for the scalar field theory in Sec. II. It is thought that it is
important to find dependence on the four-fermi couplings

FIG. 3 (color online). The RG corrections for the effective
four-fermi couplings are illustrated diagrammatically. The bold
and wavy lines represent propagators of the chiral fermions and
the gauge bosons, respectively.
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Figure 1. Conjectured beta function for the ’t Hooft coupling λ of a non-supersymmetric strong
dynamics as a function of λ for three different values of Nf in the vicinity of the critical value N c

f ,
and below the bound at which asymptotic freedom is lost (see also footnote 10). In the lower line
Nf < N c

f , in the middle line Nf = N c
f , and in the upper line Nf > N c

f . The first case is the
one advocated in the WTC framework; in this section we will focus on the other two cases. The
conjecture predicts the existence of a non-trivial UV fixed point λUV in addition to the IR fixed
point λIR ≤ λUV. The fixed points are expected to merge λIR = λUV = λc at the lower end of the
conformal window, i.e. when Nf = N c

f , and disappear when Nf < N c
f .

approaches to this program. The first consists in describing the strong branch in terms

of the original non-abelian gauge theory action. This approach requires a nonperturbative

tool. The second approach is more adequate to our purposes, and consists in formulating

a theory for the strong branch in terms of a dual field theory defined at λUV. An effective

formulation of such a dynamics is obtained by including on the top of the CFT defined

by the TC theory at the IR fixed point λIR all the operators Oi that are relevant at the

non-trivial UV fixed point. The formal description of the asymptotically non-free dynamics

would hence be given in terms of the path integral [18]

⟨ei
R

P

i fiOi⟩CFT . (4.1)

In the above expression, the CFT is defined by the correlators of the non-abelian theory at

the IR fixed point λ = λIR, the Oi’s are local operators that become relevant at λUV, and

fi are suitable couplings for the CFT perturbations. The fi’s represent the only couplings

in our dual (effective) description.

In principle, there exists a neat way to identify the set of local operators relevant to

our analysis, at least for λUV ∼ λIR (i.e. for Nf ∼ N c
f ). One defines the asymptotically free

theory on the lattice for a number of flavors Nf ≥ N c
f , and then studies the RG evolution

of the local operators. At the IR fixed point λ = λIR one identifies a set of operators with

scaling dimension ∆ ≤ 4; by continuity, we expect these dimensions to be arbitrarily close
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notation, the tree level pion mass would be m2
⇡ = 2B⇡m close to the chiral limit, with the dilaton decoupled from

pion dynamics. The pion decay constant f⇡ is defined in the chiral limit. The tree-level dilaton mass in the chiral
limit of vanishing fermion mass is designated as md and it is defined by the second derivative of the tree-level
dilaton potential at its � = fd minimum as V 00(� = fd) = m2

d. The dilaton mass at finite fermion mass deformations
is designated by Md.

The scale-dependent anomalous dimension of the chiral condensate, as y = 3�� in Eq.(1), will require some more
refined scale setting definition in walking theories and will be addressed in the plans. In the sextet model we have
detailed information on the scale-dependent � which will be compared with the results emerging from the analysis
of Eqs.(1,2a,2b). It should be noted that the Lagrangian of the dilaton EFT in Eq.(1) has a long history which
includes [36, 39–49] with further references.

Implicit Maximum Likelihood predictions from dilaton V� and Vd potentials: In the implicit Maximum
Likelihood (IML) based analysi, the five fitted physical parameters f⇡,B⇡,y,md/ f⇡, fd/ f⇡ are defined by tree-level
application of the dilaton EFT, based on Eq.(1). For the choice of the dilaton potential V�(�) the physical
parameters are subject to three non-linear constraints at each input fermion mass m leading to twelve constraints
with input at four di↵erent fermion masses in the IML procedure,
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The general scaling relation of Eq.(3) is independent from the choice of the dilaton potential [14, 34]. The dilaton
potential V� itself leads to two added non-linear conditions, with Eq.(4) set by V 0�(� = Fd), and Eq.(7) set by
V 00� (� = Fd), as in [14]. With unchanged scaling relation from Eq.(3), two alternative equations are derived from
V 0d(� = Fd) and V 00d (� = Fd),
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Results for the physical parameters from IML fits: The fitted distributions of the physical parameters
f⇡,B⇡,y,md/ f⇡, fd/ f⇡ and their correlations are shown in Fig. 4 and Fig. 3 from exact IML with synthetic MC
error estimates. For input, M⇡(m), F⇡(m) correlated pairs of distribution functions were generated from
extrapolation to infinite volume using finite size scaling (FSS) analysis separately at each fermion mass. Lattice
input to the FSS fits was provided by three pairs of six M⇡(m,L,Lt), F⇡(m,L,Lt) data from three volumes with
linear sizes L,Lt in respective spatial and time directions. Md(m) for input to was generated without FSS from the
largest available volume for each m. Twelve input data were selected, using m = 0.015/0.020/0.030/0.040 from
the M⇡(m), F⇡(m),Md(m), for the non-linear IML fitting procedure of the five physical parameters from respective
Eqs.(??-5) of the two dilaton potentials. The MC distributions of the five fitted physical parameters and their
correlations (covariance matrix) were generated from three thousand drawings from the M⇡(m),F⇡(m),Md(m)
normal distributions in synthetic MC run as shown in Fig. 4 and Fig. 3.

Results from the choice V�(�) in Eq.(2a) with simultaneous fits to f⇡,B⇡,y,md/ f⇡, fd/ f⇡ have good �2 parameters
and the inconsistencies of the �-model inspired �PT estimates disappeared. Although the IML value of
B⇡ = 3.587(43) is practically the same what we obtained from the chiral log fit to M⇡2 in the upper left panel of
Fig. 2, the IML value is f⇡ = 0.01415(56), di↵erent from the chiral log fit to M⇡2 and closer to the chiral log fit of
F⇡ in its panel of Fig. 2. It is quite remarkable that the V� dilaton potential lead to a consistent description of the
M⇡,F⇡ data set. The dilaton mass in f⇡ units, md/ f⇡ = 2.36(21) is rmarkably light, lower than what we expected
earlier for the 0++ scalar in chiral log extrapolations. The ratio fd/ f⇡ = 3.26(31) remains a problem for the
phenomenology of Electroweak embedding. The anomalous dimension � = 1.151(11) is higher than the direct
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Results for the physical parameters from IML fits: The fitted distributions of the physical parameters
f⇡,B⇡,y,md/ f⇡, fd/ f⇡ and their correlations are shown in Fig. 4 and Fig. 3 from exact IML with synthetic MC
error estimates. For input, M⇡(m), F⇡(m) correlated pairs of distribution functions were generated from
extrapolation to infinite volume using finite size scaling (FSS) analysis separately at each fermion mass. Lattice
input to the FSS fits was provided by three pairs of six M⇡(m,L,Lt), F⇡(m,L,Lt) data from three volumes with
linear sizes L,Lt in respective spatial and time directions. Md(m) for input to was generated without FSS from the
largest available volume for each m. Twelve input data were selected, using m = 0.015/0.020/0.030/0.040 from
the M⇡(m), F⇡(m),Md(m), for the non-linear IML fitting procedure of the five physical parameters from respective
Eqs.(??-5) of the two dilaton potentials. The MC distributions of the five fitted physical parameters and their
correlations (covariance matrix) were generated from three thousand drawings from the M⇡(m),F⇡(m),Md(m)
normal distributions in synthetic MC run as shown in Fig. 4 and Fig. 3.

Results from the choice V�(�) in Eq.(2a) with simultaneous fits to f⇡,B⇡,y,md/ f⇡, fd/ f⇡ have good �2 parameters
and the inconsistencies of the �-model inspired �PT estimates disappeared. Although the IML value of
B⇡ = 3.587(43) is practically the same what we obtained from the chiral log fit to M⇡2 in the upper left panel of
Fig. 2, the IML value is f⇡ = 0.01415(56), di↵erent from the chiral log fit to M⇡2 and closer to the chiral log fit of
F⇡ in its panel of Fig. 2. It is quite remarkable that the V� dilaton potential lead to a consistent description of the
M⇡,F⇡ data set. The dilaton mass in f⇡ units, md/ f⇡ = 2.36(21) is rmarkably light, lower than what we expected
earlier for the 0++ scalar in chiral log extrapolations. The ratio fd/ f⇡ = 3.26(31) remains a problem for the
phenomenology of Electroweak embedding. The anomalous dimension � = 1.151(11) is higher than the direct

notation, the tree level pion mass would be m2
⇡ = 2B⇡m close to the chiral limit, with the dilaton decoupled from

pion dynamics. The pion decay constant f⇡ is defined in the chiral limit. The tree-level dilaton mass in the chiral
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The scale-dependent anomalous dimension of the chiral condensate, as y = 3�� in Eq.(1), will require some more
refined scale setting definition in walking theories and will be addressed in the plans. In the sextet model we have
detailed information on the scale-dependent � which will be compared with the results emerging from the analysis
of Eqs.(1,2a,2b). It should be noted that the Lagrangian of the dilaton EFT in Eq.(1) has a long history which
includes [36, 39–49] with further references.

Implicit Maximum Likelihood predictions from dilaton V� and Vd potentials: In the implicit Maximum
Likelihood (IML) based analysi, the five fitted physical parameters f⇡,B⇡,y,md/ f⇡, fd/ f⇡ are defined by tree-level
application of the dilaton EFT, based on Eq.(1). For the choice of the dilaton potential V�(�) the physical
parameters are subject to three non-linear constraints at each input fermion mass m leading to twelve constraints
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F⇡ in its panel of Fig. 2. It is quite remarkable that the V� dilaton potential lead to a consistent description of the
M⇡,F⇡ data set. The dilaton mass in f⇡ units, md/ f⇡ = 2.36(21) is rmarkably light, lower than what we expected
earlier for the 0++ scalar in chiral log extrapolations. The ratio fd/ f⇡ = 3.26(31) remains a problem for the
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f⇡,B⇡,y,md/ f⇡, fd/ f⇡ and their correlations are shown in Fig. 4 and Fig. 3 from exact IML with synthetic MC
error estimates. For input, M⇡(m), F⇡(m) correlated pairs of distribution functions were generated from
extrapolation to infinite volume using finite size scaling (FSS) analysis separately at each fermion mass. Lattice
input to the FSS fits was provided by three pairs of six M⇡(m,L,Lt), F⇡(m,L,Lt) data from three volumes with
linear sizes L,Lt in respective spatial and time directions. Md(m) for input to was generated without FSS from the
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the M⇡(m), F⇡(m),Md(m), for the non-linear IML fitting procedure of the five physical parameters from respective
Eqs.(??-5) of the two dilaton potentials. The MC distributions of the five fitted physical parameters and their
correlations (covariance matrix) were generated from three thousand drawings from the M⇡(m),F⇡(m),Md(m)
normal distributions in synthetic MC run as shown in Fig. 4 and Fig. 3.

Results from the choice V�(�) in Eq.(2a) with simultaneous fits to f⇡,B⇡,y,md/ f⇡, fd/ f⇡ have good �2 parameters
and the inconsistencies of the �-model inspired �PT estimates disappeared. Although the IML value of
B⇡ = 3.587(43) is practically the same what we obtained from the chiral log fit to M⇡2 in the upper left panel of
Fig. 2, the IML value is f⇡ = 0.01415(56), di↵erent from the chiral log fit to M⇡2 and closer to the chiral log fit of
F⇡ in its panel of Fig. 2. It is quite remarkable that the V� dilaton potential lead to a consistent description of the
M⇡,F⇡ data set. The dilaton mass in f⇡ units, md/ f⇡ = 2.36(21) is rmarkably light, lower than what we expected
earlier for the 0++ scalar in chiral log extrapolations. The ratio fd/ f⇡ = 3.26(31) remains a problem for the
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Results for the physical parameters from IML fits: The fitted distributions of the physical parameters
f⇡,B⇡,y,md/ f⇡, fd/ f⇡ and their correlations are shown in Fig. 4 and Fig. 3 from exact IML with synthetic MC
error estimates. For input, M⇡(m), F⇡(m) correlated pairs of distribution functions were generated from
extrapolation to infinite volume using finite size scaling (FSS) analysis separately at each fermion mass. Lattice
input to the FSS fits was provided by three pairs of six M⇡(m,L,Lt), F⇡(m,L,Lt) data from three volumes with
linear sizes L,Lt in respective spatial and time directions. Md(m) for input to was generated without FSS from the
largest available volume for each m. Twelve input data were selected, using m = 0.015/0.020/0.030/0.040 from
the M⇡(m), F⇡(m),Md(m), for the non-linear IML fitting procedure of the five physical parameters from respective
Eqs.(??-5) of the two dilaton potentials. The MC distributions of the five fitted physical parameters and their
correlations (covariance matrix) were generated from three thousand drawings from the M⇡(m),F⇡(m),Md(m)
normal distributions in synthetic MC run as shown in Fig. 4 and Fig. 3.

Results from the choice V�(�) in Eq.(2a) with simultaneous fits to f⇡,B⇡,y,md/ f⇡, fd/ f⇡ have good �2 parameters
and the inconsistencies of the �-model inspired �PT estimates disappeared. Although the IML value of
B⇡ = 3.587(43) is practically the same what we obtained from the chiral log fit to M⇡2 in the upper left panel of
Fig. 2, the IML value is f⇡ = 0.01415(56), di↵erent from the chiral log fit to M⇡2 and closer to the chiral log fit of
F⇡ in its panel of Fig. 2. It is quite remarkable that the V� dilaton potential lead to a consistent description of the
M⇡,F⇡ data set. The dilaton mass in f⇡ units, md/ f⇡ = 2.36(21) is rmarkably light, lower than what we expected
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Results for the physical parameters from IML fits: The fitted distributions of the physical parameters
f⇡,B⇡,y,md/ f⇡, fd/ f⇡ and their correlations are shown in Fig. 4 and Fig. 3 from exact IML with synthetic MC
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extrapolation to infinite volume using finite size scaling (FSS) analysis separately at each fermion mass. Lattice
input to the FSS fits was provided by three pairs of six M⇡(m,L,Lt), F⇡(m,L,Lt) data from three volumes with
linear sizes L,Lt in respective spatial and time directions. Md(m) for input to was generated without FSS from the
largest available volume for each m. Twelve input data were selected, using m = 0.015/0.020/0.030/0.040 from
the M⇡(m), F⇡(m),Md(m), for the non-linear IML fitting procedure of the five physical parameters from respective
Eqs.(??-5) of the two dilaton potentials. The MC distributions of the five fitted physical parameters and their
correlations (covariance matrix) were generated from three thousand drawings from the M⇡(m),F⇡(m),Md(m)
normal distributions in synthetic MC run as shown in Fig. 4 and Fig. 3.

Results from the choice V�(�) in Eq.(2a) with simultaneous fits to f⇡,B⇡,y,md/ f⇡, fd/ f⇡ have good �2 parameters
and the inconsistencies of the �-model inspired �PT estimates disappeared. Although the IML value of
B⇡ = 3.587(43) is practically the same what we obtained from the chiral log fit to M⇡2 in the upper left panel of
Fig. 2, the IML value is f⇡ = 0.01415(56), di↵erent from the chiral log fit to M⇡2 and closer to the chiral log fit of
F⇡ in its panel of Fig. 2. It is quite remarkable that the V� dilaton potential lead to a consistent description of the
M⇡,F⇡ data set. The dilaton mass in f⇡ units, md/ f⇡ = 2.36(21) is rmarkably light, lower than what we expected
earlier for the 0++ scalar in chiral log extrapolations. The ratio fd/ f⇡ = 3.26(31) remains a problem for the
phenomenology of Electroweak embedding. The anomalous dimension � = 1.151(11) is higher than the direct

 Mπ ,Fπ ,Md  input data at each m

fπ ,  B,  fd  ,  md  ,  y fitted for all m

IML: Implicit Maximum Likelihood test
IML is very different from ML fitting
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not affected by details of our fitting procedure. It was argued in [30] and presented at the confer-
ence [31] that the analysis of the n f = 8 model in [12, 13] is based on input data in the high-mass
range of fermion mass deformations where Mp and Fp would show conformal scaling. It was esti-
mated in [30,31] that two orders of magnitude drop would be required from the currently available
fermion mass range before the onset of chiral behavior is reached at very low fermion masses, out-
side the reach of realistic lattice simulation. The argument was based on Eq.(4.1) of the EFT for
the choice Vd of the dilaton potential in Eq.(4.2a). We checked our input data set Mp ,Fp from the
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Figure 8: Inconsistencies of the conformal tests in the n f = 8 model, exhibiting considerable variation of the Mp/Fp
ratio in the fitted fermion mass range from incompatibility conformal exponents between Mp and Fp .

recent LSD publication [7] for conformal behavior in the fermion mass range of the input data. The
results in Fig. 8 for Mp and Fp do not show conformal behavior in the mass range of the dilaton
analysis with considerable variation of the Mp/Fp ratio and inconsistent conformal g exponents
from forced conformal fits of Mp and Fp . Although the identification of current n f = 8 simulations
with the high-mass conformal regime will require correction terms [31], the estimated two order of
magnitude drop in m for reaching the regime of cSB might not be far from what is required. At the
conference we presented an idea how this large drop in m might be reached instead in the e-regime
of cSB.

5. Dilaton EFT analysis in the e-regime and RMT

In the e-regime, close to the chiral limit where the pion correlation length far exceeds the
linear size of the finite volume, the EFT Lagrangian of Eq.(4.1) simplifies to

Le =
1
2

∂µ c∂µ c � Vd(c)+
m2

p f 2
p

4
� c

fd

�y tr
⇥
S0 +S†

0
⇤
. (5.1)

In Eq.(5.1) the coupling of the dilaton to the S0 zero mode of the pion field is represented by
the c(x) field and can be treated by systematic expansion. In the strict m ! 0 chiral limit the
pions become decoupled from the dilaton field. The challenge of this approach is to get close
enough to the chiral limit at extremely small fermion masses. In fact, from careful studies of the
lowest eigenvalues of the Dirac operator we determined that this limit would be feasible in large
volume simulations at extremely small m values. The feasibility was demonstrated by decreasing
the fermion mass m two orders of magnitude, down to m = 0.000010 at the sextet gauge coupling
b = 3.20 with an estimated inverse pion mass of M�1

p ⇡ 125 in the equivalent infinite volume
p-regime. The simulation results from 644 and 483 ⇥ 96 lattice volumes with Mp ·L < 1 at m =

0.000010 are shown in Fig. 9.
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Figure 9: The spectral density of the full spectrum in the sextet model is shown on the left panel. Quartet averages
of the lowest 24 eigenvalues are shown on the right panel for input into RMT analysis of the e-regime. The shape and
distribution of the lowest eigenvalues favors cSB close to the chiral limit.

In the limit of asymmetric aspect ratio L/Lt ! 0 at fixed spatial size L we cross over to the
d -regime where in the chiral limit the dilaton EFT is further simplified for rotator analysis of the
pion and the (de)coupling of the dilaton field,

Ld =
1
2

∂µ c∂µ c � V (c)+ f 2
p
4
� c

fd

�2 tr
⇥
∂tS0 ∂tS†

0
⇤
. (5.2)

The time derivative ∂tS0 of the zero three-momentum component of the pion field controls the
coupled rotator dynamics on the SU(2) group manifold. Further analysis of Eqs.(5.1,5.2) remains
outside the scope of this report.

6. Conclusions
Based on the hypothesis of dilaton EFT description, tantalizing test results were obtained from

the analysis of the sextet model with particularly interesting physical parameters for the Vd form
of the dilaton potential. It is important to note that the dilaton description of the light scalar from
broken scale invariance does not follow from the b -function based walking behavior. Conformal
symmetry breaking is not necessarily coupled to walking and requires better theoretical under-
standing. In addition, extended statistical analysis will be required for the full implementation of
the implicit Maximum Likelihood method to assess the sensitivity and quality of our fitting proce-
dure to different forms of the dilaton potential. Ratios of physical parameters depend on the Vd or
Vs form of the dilaton potential at fixed lattice spacing, calling for precision studies when the cut-
off is varied in large volumes and close to the chiral limit. The e-regime offers new opportunities,
perhaps with direct determination of the effective dilaton potential from methods we developed and
tested earlier in Yukawa theories of scalar fields and fermions [43,44]. It is also an important open
question, if the application of the dilaton EFT survives other tests of fermion mass deformations,
like cPT effects in the chiral condensate, or the renormalized gauge coupling on the gradient flow.

Acknowledgments
We acknowledge support by the DOE under grant DE-SC0009919, by the NSF under grant

1620845, and by the Deutsche Forschungsgemeinschaft grant SFB-TR 55. Computational re-
sources were provided by the DOE INCITE program on the ALCF BG/Q platform, by USQCD at
Fermilab, by the University of Wuppertal, and by the Juelich Supercomputing Center on Juqueen.

11

epsilon regime with very small fermion 

mass deformation

delta regime m=0

very small fermion mass deformation

can be added

epsilon regime and RMT

new ensembles at equivalent p-regime pion mass Mpi ~ 100 and volume size 644



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 eigenvalue scale 10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
od

e 
nu

m
be

r  
 

(
,m

)

  Mode number ( ,m)

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

Vol=644 =3.25 m=0.000010
65 configurations
quartet eigenvalues

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 eigenvalue scale 10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sp
ec

tra
l d

en
si

ty
  2

 
(

,m
)

10-3   spectral density 2 ( ,m)

Vol=644 .     =3.25   m=0.000010
65 configurations
quartet eigenvalues

successful testing 

ongoing analysis (preliminary results not shown)

epsilon regime and RMT



Conclusions and outlook 

• Idea of walking from complex CFT is attractive, rep independent


• Needs EFT description on several scales, far IR is σ-model


• Does not imply the existence of the dilaton


• EFT of the dilaton remains attractive possibility


• Its tests above the linear σ-regime  has issues


• Unified framework for complex CFT and the dilaton?


