Case studies of near-conformal and conformal beta functions

Kieran Holland
University of the Pacific
June 20 2019

on behalf of the Lattice Higgs Collaboration (LatHC):
Julius Kuti, Zoltan Fodor, Daniel Nogradi and Chik-Him Wong
Overview

there have been many studies of the beta-function in the search for (near) conformal behavior by many groups — too many to summarize all

several years of LatHC studies shows a consistent trend of decreasing beta function with increasing flavor number Nf

combined with other work, a steadily lighter scalar emerges, the hoped for Higgs impostor

but how sure are we about all of this?

and what is new this year?

1. there are recent discrepancies for Nf = 10 with domain wall studies - can we clear this up?

2. Nf = 12 is in a very delicate region - is the evidence in favor of the theory being near-conformal any stronger?

3. Nf = 2 sextet has been our flagship as a BSM candidate, what improvements can we show in the beta-function

Overall theme: are systematic effects under control?
Method

same technology is used across studies:

renormalized $g^2(L)$ measured through the gradient flow on finite volume L with fixed $c = \sqrt{8t/L}$

beta function $(g^2(sL) - g^2(L)) / \log(s^2)$ from finite scale change $L \to sL$

step scaling with constant $g^2(L)$ for many volumes to take continuum limit

example:

\[\begin{align*}
L &= 16, 18, 20, 24, 28, 32 \\
2L &= 32, 36, 40, 48, 56, 64
\end{align*} \]

among the systematic effects:

- discretization of the gradient flow
- number of lattice spacings available for continuum extrapolation
- choice of s value for scale change
- choice of c value for renormalization scheme

simulations needed on all these volumes, at various bare couplings
\(Nf = 12 \): previous claims of an infrared fixed point in a range where we simulate and found none

\textit{new this year}: simulate even closer to the continuum with additional data for \(s = 2 \) with \(32 \rightarrow 64 \)

new data point is right in the location where previous fits would indicate and gives a consistency test with \(s = 4/3 \) with \(48 \rightarrow 64 \), strengthening case against IRFP

\(g^2(L) \) tuned, not interpolated; \(O(a^2) \) good from \(L \geq 18 \)

\textbf{consistent results: beta-function small but non-zero}
convergence of SSC and WSC schemes

\[(g^2(sL) - g^2(L))/\log(s^2) = c_0 + c_1 \cdot a^2/L^2 \]

\[c_0 = 0.138 \pm 0.014 \]
\[c_1 = -50.9 \pm 5.4 \]
\[\chi^2/\text{dof}= 0.49 \]

\[g^2 \text{ targeted: } 6.95 \]
\[\chi^2/\text{dof}= 0.2 \]

\[(g^2(sL) - g^2(L))/\log(s^2) = c_0 + c_1 \cdot a^2/L^2 + c_2 \cdot a^4/L^4 \]

\[c_0 = 0.119 \pm 0.037 \]
\[c_1 = -216 \pm 33 \]
\[c_2 = 1.42 \times 10^4 + 6.6 \times 10^3 \]

\[g^2/L^2 \text{ targeted: } 6.95 \]

\[\chi^2/\text{dof}= 0.2 \]

\[(g^2(sL) - g^2(L))/\log(s^2) = c_0 + c_1 \cdot a^2/L^2 + c_2 \cdot a^4/L^4 \]

\[c_0 = 0.119 \pm 0.037 \]
\[c_1 = -216 \pm 33 \]
\[c_2 = 1.42 \times 10^4 + 6.6 \times 10^3 \]

\[g^2/L^2 \text{ targeted: } 6.95 \]

\[\chi^2/\text{dof}= 0.2 \]

\[N_f = 12 \]

same behavior at \(c = 0.25 \) \[\text{different renormalization scheme} \]

LatHC results from PLB 779 (2018) 230

very good agreement in continuum limit between two gradient flow discretizations

beta-function small but non-zero \[\text{this is not a question about the value of } c \]
something else new for $\textbf{Nf} = 12$:
anomalous mass dimension gamma

method presented at Lattice 2018 for $\textbf{Nf} = 13$

use the mode number via Chebyshev expansion

$$\rho(t) = \frac{1}{\sqrt{1 - t^2}} \sum_{k=0}^{\infty} c_k T_k(t)$$

$$\nu(\lambda) = \int_{0}^{\lambda} \rho(\lambda') d\lambda'$$

$$\nu_R(\lambda_R) = \nu(\lambda), \quad \lambda_R = Z_p^{-1} \cdot \lambda$$

$$\lambda_L = \frac{c_\lambda}{L}$$

match mode numbers on different volumes

continuum limit through step-scaling

method works well: high accuracy, small cutoff effects

anomalous mass dimension gamma running with g^2 — no indication of flowing to a fixed point value
the $N_f = 10$ model is an important anchor point:

the theory can be a BSM template with either mass splitting e.g. $4 + 6$, or with the Higgs as a pseudo-Nambu-Goldstone state — in either situation, would want to know if the $N_f = 10$ massless model is conformal or not

If lattice simulations can’t be definitive about $N_f = 10$, it is hard to believe claims for larger values of N_f, or other models with a reportedly smaller beta function

This time last year, there were discrepancies between 3 groups reporting results, each with continuum extrapolation

LatHC: staggered

Boulder: Hasenfratz, Rebbi, Witzel ; domain wall

Taiwan: T.W. Chiu ; domain wall

There is striking difference between the 3 results in the region $g^2 \sim 5 - 6$, as well as huge inconsistency between a claimed infrared fixed point at $g^2 \sim 7$ as opposed to a far-from-zero beta function quite similar to the 5-loop perturbative prediction

Among the claims were that staggered fermions might be in the wrong universality class

Is there anything new in the meantime?

Lattice 2019 K Holland
updates on the domain wall studies have shown significant changes:

Boulder: an increase in the beta-function in the range $g^2 \sim 4.5 - 6$

Taiwan: a decrease at $g^2 \sim 5.2$, and an increase around $g^2 \sim 7$

at this point there is no statistical difference between the LatHC and Boulder results, while the Taiwan result remains significantly smaller

The methodology of using the gradient flow to measure the beta-function is the same for each work e.g. step-scaling of finite volumes for the continuum extrapolation

Importantly, we can compare for exactly the same renormalization scheme set by the choice $c = \sqrt{8t/L}$ so there should be no quantitative difference between different studies
cutoff effects appear in the finite-step beta-function with $L \to sL$ at $O(a^2)$, and corrections of $O(a^4)$ can be significant.

Lattice artifacts can be different in magnitude for different discretizations of the gradient flow — will return to this point later.

LatHC data set:

12/16/18/20/24

24/32/36/40/48

Boulder data set:

8/10/12

16

16/20/24

32

Typically across the range of g^2 we find $O(a^2)$ describes the data for $L \geq 16$ well, and $L = 12$ can be included with $O(a^4)$. At this particular coupling $g^2 = 5.5$, the cutoff effects in our data appear to be accidentally small and the $s = 2$ data can be fit with a constant.

With the new point $L = 16$ for the Boulder work, $O(a^2)$ is no longer a good fit starting from $L = 8$, and including an $O(a^4)$ term gives a continuum result statistically in agreement with ours.

Our data also allow an analysis with $s = 3/2$ and we find very good consistency with the $s = 2$ results.

Being able to reach to finer lattice spacing with $L = 18, 20, 24$ with staggered fermions is crucial

Lattice 2019 K Holland
Taiwan update: interpolation in bare coupling across a range of g^2 replaced by tuning of bare coupling at a few target values of g^2; same set of lattice spacings as Boulder i.e. $L =$ 8/10/12/16 on the smaller volumes for $L \rightarrow sL$. Switch from interpolation to tuning gives increase in beta function at stronger coupling.

Somewhat surprisingly an $O(a^2)$ fit of the Taiwan data works down to $L =$ 8, we see $O(a^4)$ becoming relevant already at $L =$ 12.

gradient flow discretization: **Flow-Simulation-Observable**

Taiwan: Wilson-Wilson-Clover \quad **LatHC**: Symanzik-Symanzik-Clover

smallness of cutoff effects at tree-level for any discretization not relevant at $Nf = 10$ where dynamical fermion effects are essential — otherwise we’re simply studying pure Yang-Mills

Our interpolation $O(\beta^3)$ across a narrow beta range, not extended to cover weak coupling as well

remaining systematic: domain wall residual mass, which grows quickly with renormalized g^2
Nf = 10

concerns about systematic errors for staggered fermions? non-degeneracy of Dirac eigenvalues: colored lines: very close pairs, quartets are split

calculate reference Dirac determinant from arithmetic average of eigenvalue quartets

difference between staggered and quartet-averaged determinants should vanish in the continuum limit to generate gauge ensemble with correct weight

not feasible to calculate the entire Dirac spectrum numerically, compare determinants up to an eigenvalue scale lambda_max set by the lattice volume

\[\lambda_{\text{max}} = c_L / L \]

at fixed renormalized \(g^2 \)

data at \(L = 32, 36, 40, 48 \) consistent with \(O(a^2, a^4) \) behavior, difference vanishes as \(a \to 0 \), as hoped for

determinant test showing that taste breaking of staggered fermions appears under control
test consistency of continuum extrapolations by varying gradient flow discretization

Flow-Simulation-Observable

e.g. Wilson-Symanzik-Clover \textbf{WSC}

4 versions: \textbf{SSC}, \textbf{WSC}, \textbf{SSS}, \textbf{WSS}

continuum extrapolation:

\(O(a^4) \) with \(L = 12, 16, 18, 20, 24 \)

\(O(a^2) \) excluding \(L = 12 \)

\textit{very nice agreement among the various combinations}

cutoff effects in \textbf{SSC} are mild — use as reference
vary the renormalization scheme through choice of c value

smaller: c = 0.25

lattice artifacts are actually not larger than at c = 0.3, contrary to some expectations

beta-functions for different schemes do not have to be quantitatively the same, the difference does not appear to be large

same picture emerges:

beta-function far above zero out to strong coupling \(g^2 = 8 \)

the value c = 0.3 is useful to compare work by different groups, but is not the only possibility
data set allows other step-scales: $s = 3/2, 4/3$

pushes closer to the continuum limit

e.g. $s = 3/2$ $32 \rightarrow 48$, $s = 4/3$ $36 \rightarrow 48$

very good agreement with $s = 2$ beta-function results

practically no room left for the beta-function to turn down between finest lattice spacing and $a = 0$
what’s new for the **Nf = 2 sextet** model: has been our focus as flagship minimal BSM theory

previous results:
beta-function small but non-zero out to $g^2 \sim 6.5$, appears near-conformal

consistent with chiral SB in the particle spectrum, Random Matrix Theory match to Dirac eigenvalue distributions

we are generating new data and going through the same systematic tests as for Nf = 10

at the weak coupling end, looks like it’s getting into perturbative region

at stronger coupling, cutoff effects with SSC variant look relatively mild

continuum limit consistent with our previous results
presented by LatHC at Lattice 2017, Granada: **infinitesimal beta-function through the gradient flow**

reminder from Anna Hasenfratz's talk on Monday

can vary the RG scale smoothly with flow time t

p-regime simulations, order of limits: infinite volume, zero mass, continuum limit

connects the chirally broken phase at strong coupling with the beta-function from step-scaling at $m = 0$

once you reach the chirally broken phase, no space left for an infrared fixed point to emerge
the picture is holding up after additional simulations and various tests to see if systematic effects are under control

previous discrepancies e.g. Nf = 10 may be clearing up, removing concern about the use of staggered fermions

the beta-function is the beginning, not the end, of the story, complemented by newer work:

dilaton analysis

complex fixed points as a “walking” signal

Dirac operator eigenvalues and RMT

…

talks by Julius Kuti and Ricky Wong