Motivation	Previous Lattice Calculations	Simulation Code	Preliminary Results

Lattice Analysis of SU(2) with 1 Adjoint Dirac Flavor

Zhen Bi, **Anthony Grebe**, Gurtej Kanwar, Patrick Ledwith, David Murphy, Michael Wagman

June 21, 2019

Motivation 00000	Previous Lattice Calculations	Simulation Code	Preliminary Results 00000
Outline			

Previous Lattice Calculations

3 Simulation Code

Motivation	Previous Lattice Calculations	Simulation Code	Preliminary Results
●0000	00	0000	00000
Motivation			

- The critical point of phase transition in condensed matter systems often has interesting properties
- For some condensed matter systems, the critical point can be described by an effective theory of SU(2) with 1 adjoint Dirac fermion
 - In particular, happens in type AIII topological superconductors (similar to superfluid helium)

(Image credit: Wikipedia)

Motivation 0●000	Previous Lattice Calculations	Simulation Code	Preliminary Results 00000
Duality			

- Critical point of topological superconductor: SU(2) with $N_f = 1$ adjoint Dirac flavor
- Critical point of topological insulator (same topology): single free fermion
- Conjecture: These theories are dual (in IR) (Z. Bi, T. Senthil, Phys. Rev. X 9, 021034, 2019)
 - May require spectator fields for anomaly matching
- Consequence: Free fermion emerges from SU(2) with $N_f = 1$

Motivation 000●0	Previous Lattice Calculations	Simulation Code	Preliminary Results 00000
Constraints			

- 't Hooft anomaly matching constrains IR behavior
- If $m_q \rightarrow 0$, we have massless particles in UV theory \Rightarrow must have massless particles in IR theory that match UV anomalies
- Possible scenarios:
 - Conformality: Sector of spectrum goes massless as $m_q
 ightarrow 0$
 - Chiral symmetry breaking: Goldstone boson (ψ^TCγ₅ψ́) goes massless (as m_q^{1/2}); other particles remain heavy
 - Bi-Senthil conjecture: Composite fermion goes light; other particles remain heavy

Motivation 0000●	Previous Lattice Calculations	Simulation Code	Preliminary Results
Hvbrid-Com	oosite Mixing		

- For $m_q > 0$, hybrid and composite fermions have same quantum numbers
 - At $m_q = 0$, have different chiral properties
 - Composite fermion (but not hybrid) has correct chiral transformation properties for anomaly matching
- Unclear a priori whether hybrid and composite interpolators have significant overlap with same states (except that overlap vanishes as $m_q \rightarrow 0$)

Motivation 00000	Previous Lattice Calculations ●○	Simulation Code	Preliminary Results
Previous Cal	culations		

- Athenodorou, Bennett, Bergner, and Lucini conducted a lattice simulation of SU(2) + 1 adjoint flavor motivated by composite Higgs models (Athenodorou *et al.*, Phys. Rev. D 91, 114508, 2015)
- Studied diquarks, mesons, glueballs, and hybrid but not composite
 - Study predates Bi-Senthil conjecture
- Found numerical support for conformality with $m^{1.95} \sim m_q$ for all particle masses m

Motivation	Previous Lattice Calculations	Simulation Code	Preliminary Results
00000	○●		00000
Previous Rev	sults		

Plot from Figure 4a (Athenodorou et al., arXiv:1507.08892)

・ロト・日本・日本・日本・日本

Motivation	Previous Lattice Calculations	Simulation Code	Preliminary Results
00000		●000	00000
Simulation			

- Many lattice codes (e.g. chroma) only handle fundamental fermions
- Qlua: USQCD software built on top of QDP and Lua scripting language (A. Pochinsky, J. Osborn, S. Syritsyn)
- Designed to combine flexible code development with high performance
- Can link to QUDA inverters for additional speed (K. Clark, Thurs. 11:15)
 - SU(2) adjoint has 3 colors can use standard SU(3) inverters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• No built-in support for adjoint fermions or RHMC

Motivation	Previous Lattice Calculations	Simulation Code	Preliminary Results
00000		0●00	00000
RHMC in Q	lua		

- We have one Dirac flavor need RHMC
- Also necessary for 3-flavor QCD simulations useful to have in Qlua
- Implemented routines to evaluate rational expansion of power functions and related force terms
 - Built linkages to QUDA multishift inverter (needed for RHMC)

• Implemented Ritz solver to determine spectrum (required for rational expansion)

Motivation	

Previous Lattice Calculations

Simulation Code

Preliminary Results

Thermalization Plot

Simulation I	Parameters		
Motivation	Previous Lattice Calculations	Simulation Code	Preliminary Results
00000		000●	00000

- Matched simulation parameters of Athenodorou *et al.* in order to cross-check result
 - $\beta = 2.05$
 - $-am_q$ ranges from 1.475 to 1.524
- For now, lattices are $12^3 \times 24$ but $m_\pi L > 4.8$ throughout
- Observables measured using either point source/sink or combination of wavefunction and stout smearing
- Composite fermion computed using analog of baryon contraction algorithm on coarsened grid of propagators (Detmold

and Originos, PRD 114512, 2013; Murphy, Friday 14:40)

Motivation 00000	Previous Lattice Calculations	Simulation Code 0000	Preliminary Results
Composite F	ermion Diagrams		

• 3 different quark contractions possible

 $\Psi = \epsilon_{abc} \left[(\bar{\psi}_a \psi_b) \gamma_5 P \psi_c - (\bar{\psi}_a \gamma_5 \psi_b) P \psi_c \right]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation 00000	Previous Lattice Calculations	Simulation Code	Preliminary Results
Results			

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへぐ

Motivation 00000	Previous Lattice Calculations	Simulation Code	Preliminary Results ○○●○○
Results			

ヘロン ヘロン ヘビン ヘビン æ

Motivation 00000	Previous Lattice Calculations	Simulation Code	Preliminary Result ○00●0
Results			

・ロト ・四ト ・ヨト ・ヨト

æ

Motivation	Previous Lattice Calculations	Simulation Code	Preliminary Results
00000	00		0000●
Future Work			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Simulations at lighter masses
- This requires finer lattice spacings, larger volumes
- Improvements to action (clover term)

Motivation 00000	Previous Lattice Calculations	Simulation Code	Preliminary Results 00000
References			

- Bi, Z., and Senthil T., "An Adventure in Topological Phase Transitions in 3 + 1-D: Non-abelian Deconfined Quantum Criticalities and a Possible Duality" (2018).
- Athenodorou A. et al., "The Infrared Regime of *SU*(2) with One Adjoint Dirac Flavour" (2014).
- Athenodorou A. et al., "Recent results from *SU*(2) with One Adjoint Dirac Fermion" (2015).
- Detmold, W., and K. Originos, "Nuclear correlation functions in lattice QCD" (2013).

Pochinsky A., J. Osborn, S. Syritsyn, Qlua software, https://usqcd.lns.mit.edu/redmine/projects/qlua.