

Sparsening Algorithm for Multi-Hadron Lattice QCD Correlation Functions

W. Detmold, D.J. Murphy, A. Pochinsky, M. Savage, P. Shanahan, M. Wagman

June 21, 2019

Lattice 2019

Motivation

- Traditionally: gauge cfgs. and propagators expensive, contractions cheap
- More recently, some nuclear physics calculations contraction-dominated
 - \blacktriangleright Multigrid solvers have accelerated HMC and propagators by $\mathcal{O}(10-100)$
 - Contraction costs grow exponentially in number of quarks
- Nuclear correlation functions typically computed from "baryon blocks":

$$\mathcal{B}_{b}^{a_{1},a_{2},a_{3}}\left(\vec{p},t;x_{0}\right) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \sum_{k=1}^{N_{B(b)}} \widetilde{w}_{b}^{(c_{1},c_{2},c_{3}),k} \sum_{i_{1},i_{2},i_{3}} \epsilon^{i_{1},i_{2},i_{3}} S_{c_{i_{1}}}^{a_{1}}\left(x;x_{0}\right) S_{c_{i_{2}}}^{a_{2}}\left(x;x_{0}\right) S_{c_{i_{3}}}^{a_{3}}\left(x;x_{0}\right)$$

- ▶ Usually many source locations, op. smearings, background fields, etc.
- FFTs are dominant cost
- Blocks can be stored and re-used between calculations
- Idea: explore multigrid-like "sparsening" targeting contractions
 - ► Sparsen at the propagator level and do contractions on coarsened lattice
 - Coarsening spatial directions by N reduces FFT and storage costs by $\sim N^3$

Sparsening

- Prescription: uniformly block spatial directions by a factor *N*, and take first site in each block to define sparsened propagators on coarse lattice
- Distinguish between "full" correlation functions

$$\mathcal{L}_{\mathrm{full}}\left(ec{p},t;ec{x_{0}},t_{0}
ight) = \left\langle 0 \middle| \sum_{ec{x} \in \Lambda_{3}} e^{iec{p}\cdotec{x}} \mathscr{O}\left(ec{x},t
ight) \mathscr{O}^{\dagger}\left(ec{x_{0}},t_{0}
ight) \middle| 0
ight
angle$$
 $\Lambda_{3} = \left\{ \left(n_{1},n_{2},n_{3}
ight) \middle| 0 \leq n_{i} < L
ight\}$

and "sparse" correlation functions

$$C_{ ext{sparse}}\left(ec{p},tec{,}ec{x}_{0},t_{0}
ight)=\left\langle 0
ight|\sum_{ec{x}\in\widetilde{\Lambda}_{3}\left(N
ight)}e^{ec{p}\cdotec{x}}\mathscr{O}\left(ec{x},t
ight)\mathscr{O}^{\dagger}\left(ec{x}_{0},t_{0}
ight)\left|0
ight
angle$$

 $\widetilde{\Lambda}_3(N) = \left\{ \left(n_1, n_2, n_3 \right) \middle| 0 \le n_i < L; n_i \equiv 0 \pmod{N} \right\}$

- Simple interpretation as modified sink interpolator (partial mom. proj.)
 - ▶ Preserves FV spectrum and matrix elements (!)
 - ▶ Potentially modifies couplings to excited states, statistical noise, ... (?)
- Case study: examine two-point functions and ground state energy extractions on $32^3 \times 48$, $N_f = 3$, $m_\pi \approx 800$ MeV Wilson-clover ensemble

Spatial Correlations

 $\Gamma(r) = \left\langle \left(C(\vec{p},t;\vec{x}_0,t_0) - \left\langle C(\vec{p},t;\vec{x}_0,t_0) \right\rangle \right) \left(C(\vec{p},t;\vec{x}_1,t_0) - \left\langle C(\vec{p},t;\vec{x}_1,t_0) \right\rangle \right) \right\rangle$

• Relevant scales: $\left(a\Lambda_{
m QCD}
ight)^{-1}pprox$ 4.1, $\left(am_{\pi}
ight)^{-1}pprox$ 1.7, $\left(a\Lambda_{\chi
m SB}
ight)^{-1}pprox$ 1.4, ...

• Block with N = 4 in remainder of talk

Consistency of Two-Point Functions: Early Time

- Sparsened vs. full two-point functions at fixed time separation
- Data has been averaged over source locations

Consistency of Two-Point Functions: Late Time

- Sparsened vs. full two-point functions at fixed time separation
- Data has been averaged over source locations

Single Hadron Spectrum: Effective Energy Signals

- Full (circles) and sparsened (squares) effective energy signals:

Correlated ratios:

Single Hadron Spectrum: Nucleon Covariance Matrix

 $\Sigma_{ij} = \left\langle \left(C_{\alpha}(\vec{p}, t_i) - C(\vec{p}, t_i) \right) \left(C_{\alpha}(\vec{p}, t_j) - C(\vec{p}, t_j) \right) \right\rangle_{\alpha}$

Full Sparse - 1.0 1.0 46 46 44 44 42 42 40 - 0.8 40 38 36 34 32 30 28 26 0.8 38 36 34 32 30 0.6 0.6 28 26 24 24 - 0.4 22 - 0.4 20 18 18 16 16 14 - 0.2 0.2 12 12 10 8 Ġ. - 0.0 049800498004 $\kappa(\Sigma) = 5.1 \times 10^7$ $\kappa(\Sigma) = 3.2 \times 10^7$

- Plots show correlation matrix: ρ_{ij} = Σ_{ij}/σ_iσ_j
- No significant modification to correlations in time direction

Single Hadron Spectrum: Ground State Energy Extraction

			Full			Sparse	
State	$ \vec{n} ^{2}$	аE	$\chi^2/{ m dof}$	$\kappa(\Sigma)$	aE	$\chi^2/{ m dof}$	$\kappa(\Sigma)$
π	0	0.5948(3)	1.3(7)	$3.8 imes10^6$	0.5947(3)	1.4(7)	$2.6 imes10^6$
	2	0.6537(4)	1.3(7)	4.9×10^{8}	0.6537(4)	1.9(8)	8.8×10^7
	4	0.7065(4)	1.2(7)	7.9×10^{8}	0.7065(4)	1.4(7)	$1.7 imes10^8$
N	0	1.204(2)	0.7(7)	$5.1 imes10^7$	1.205(1)	0.7(7)	3.2×10^7
	2	1.233(2)	0.6(6)	5.8×10^7	1.234(1)	0.2(4)	3.5×10^7
	4	1.260(2)	0.6(6)	$6.1 imes 10^7$	1.263(2)	0.4(5)	3.8×10^7

- Ground-state energies extracted from correlated, single-exponential fits

$$f(t; Z_{\rm src}, Z_{\rm snk}, E) = \begin{cases} \frac{Z_{\rm src} Z_{\rm snk}^*}{2E} \left(e^{-Et} + e^{-E(T-t)} \right), \text{ mesons} \\ \frac{Z_{\rm src} Z_{\rm snk}^*}{2E} e^{-Et}, \text{ baryons} \end{cases}$$

No significant effect on extracted ground state energies

Multi-Hadron Spectrum: Effective Energy Signals

- $R_A(t) = C_A(t) / [C_N(t)]^A \propto^{t/a \gg 1} \exp(-\Delta E \cdot t), \ \Delta E \equiv E_A A \cdot E_N$
- Full (circles) and sparsened (squares) effective binding energy signals:

Correlated ratios:

Multi-Hadron Spectrum: Ground State Energy Extraction

State	aE	$\chi^2/{ m dof}$	aE	$\chi^2/{ m dof}$
$NN (^{1}S_{0})$	2.3961(25)	0.41(52)	2.3961(25)	0.35(48)
$NN ({}^{3}S_{1})$	2.3919(25)	0.61(65)	2.3918(25)	0.53(60)
$^{3}\mathrm{He}$	3.5726(83)	0.55(74)	3.5726(84)	0.55(72)
⁴ He	4.769(29)	0.37(57)	4.766(27)	0.57(72)

State	$a\Delta E$	$\chi^2/{ m dof}$	$a\Delta E$	$\chi^2/{ m dof}$
$NN ({}^{1}S_{0})$	-0.0140(18)	0.46(67)	-0.0138(18)	0.53(72)
$NN ({}^{3}S_{1})$	-0.0180(17)	0.26(50)	-0.0180(17)	0.29(53)
$^{3}\mathrm{He}$	-0.0434(72)	0.37(67)	-0.0431(75)	0.44(74)
⁴ He	-0.055(13)	0.36(49)	-0.054(13)	0.55(67)

Controlling Excited State Effects

• Can modify sparsened estimator to control coupling to excited states:

$$\widetilde{C}(\vec{p},t) = \frac{1}{N_{\rm sparse}} \sum_{x_0 \in \Lambda_{\rm sparse}} C_{\rm sparse}(\vec{p},t;x_0) + \frac{1}{N_{\Delta}} \sum_{x_0' \in \Lambda_{\Delta}} \left(C_{\rm full}(\vec{p},t;x_0') - C_{\rm sparse}(\vec{p},t;x_0') \right)$$

Similar to all-mode averaging (AMA) technique [Blum et. al., PRD 88, 094503]

Note: in this study sources are densely packed and highly correlated!

Conclusions

- We have explored a cost-reduction algorithm for multi-hadron correlation functions based on sparsening at the propagator level
- Ground state energies extracted from sparsened and full correlation functions are consistent
- Excited state effects are modified, but this can be controlled with an AMA-like technique
- We are now using these ideas in production calculations:
 - 1. NPLQCD light nuclear spectrum and MEs @ $m_{\pi} = 170$ MeV: $N = 6 \Rightarrow \sim 100 \times$ speed-up!
 - Coarse all-to-all propagators for spectrum of SU(2) Adjoint theory with one Dirac flavor [A. Grebe, Friday @ 16:10]
- Paper to appear on the arXiv soon....

Thank you!