FORMULATING LATTICE FIELD FOR A QUANTUM COMPUTER*

*The accidental discovery of a
Quantum Algorithm for Lattice
Gauge theories:
círca 1998:
Rich Brower - Boston University
Lattice June 19, 2019 Wuhan China

1. The quantum link (or QCD abacus) Hamiltonian was introduced as a classical algorithm representing both gauge and matter fields by single bit fermion operators in an extra dimension.
2. This formalism is recast for quantum computing, as a Hamiltonian in Minkowski space for real time Qubit simulations.
3. The advantages of pseudo-fermions to implement the Jordan Wigner transformation and the Trotter expansion in local gauge invariant local kernels is discussed.
4. For $U(1)$ compact QED the kernels on a triangular lattice are defined and a Qubit circuit implementation given to test on existing hardware.

Universality == Many equivalent LFT

- Different space-time + field discretizations define exactly the same continuum quantum field theory
- eg. Lattice different lattice give identical c = I/2 CFT - square, triangle or spherical lattice!
- Fields: Continuum phi 4th field and

single bit lsing fields are equivalent

$$
s \in \pm 1 \Longleftrightarrow \phi_{x} \in \mathbb{R}
$$

- Bosonic Sine Gordon Theory = Fermionic Thirring Theory
- $N=4$ SUSY is dual AdS Gravity

Classical O(3) MODEL
$Z=\int d S \exp \left[\frac{1}{g^{2}} \sum_{\langle x, y\rangle} \vec{S}_{x} \cdot \vec{S}_{y}\right] \quad \rightarrow \operatorname{Tr}\left[e^{\left.-\frac{\beta}{g^{2}} \sum_{x, \mu} \vec{\sigma}_{x} \cdot \vec{\sigma}_{x+\mu}\right]}\right.$

Warm up with Fermionic Quantum Operator

$$
\begin{aligned}
& \vec{S}_{x} \rightarrow a_{i}^{\dagger}(x) \sigma^{i j} a_{j}(x) \quad \text { or } \quad \hat{S}^{i j}(x)=a_{i}^{\dagger}(x) a_{j}(x) \\
& \left\{a_{i}(x), a_{j}^{\dagger}(x)\right\}=\delta_{i j} \delta_{x y} \quad, \quad\left\{a_{i}^{\dagger}(x) a_{j}^{\dagger}(x)\right\}=0 \quad, \quad\left\{a_{i}(x), a_{j}(x)\right\}=0
\end{aligned}
$$

$$
Z=\operatorname{Tr} \exp (-\beta \hat{H}) . \quad \hat{H}=\sum_{\langle x, y\rangle} \operatorname{Tr}\left[\hat{S}_{x} \hat{S}_{y}\right] \quad, \quad \operatorname{Tr}\left[\hat{S}_{x}\right]=0
$$

Global Rotation: $\vec{J}=\sum_{x} \operatorname{Tr}\left[\vec{\sigma} \hat{S}_{x}\right] \Longrightarrow[\vec{J}, \hat{H}]=0$
Local Fermion No: $\quad \hat{F}_{x}=\operatorname{Tr}\left[\hat{S}_{x}\right] \Longrightarrow\left[\hat{F}_{x}, \hat{H}\right]=0$
B.B. Beard and U-J Wiese
https://arxiv.org/abs/cond-mat/9602164

KOGUT SUSKIND HAMILTONIAN

$$
H=\frac{g^{2}}{2} \sum_{\langle x, x+\mu\rangle}\left(\operatorname{Tr}\left[E_{L}^{2}(x, \mu)\right]+\operatorname{Tr}\left[E_{R}^{2}(x, \mu)\right]\right)-\frac{1}{2 g^{2}} \sum_{\square} \operatorname{Tr}\left[U_{\square}+U_{\square}^{\dagger}\right]
$$

$\begin{gathered}\text { Example: } \mathrm{U}(1) \text { Abelian P/Q symplectic } \\ \text { operators in Q-basis are }\end{gathered} \quad E=i \frac{d}{d \theta} \quad, \quad U=\exp [i \theta]$
$\mathrm{U}(\mathrm{N})$ generalization of Gauge Algebra is

$$
E^{i j} \equiv \lambda_{\alpha}^{i j} E^{\alpha} \quad \Longrightarrow \quad\left[E^{\alpha}, E^{\beta}\right]=2 i f^{\alpha \beta \gamma} E^{\alpha}
$$

$$
\left[E_{L}, U\right]=-E_{L} U \quad, \quad\left[E_{R}, U\right]=-U E_{R}
$$

$$
E_{R}=U^{\dagger} E_{L} U \quad, \quad\left[U, U^{\dagger}\right]=0 \quad U U^{\dagger}=1
$$

OPERATOR QUANTUM GAUGE LINK

On each link ($\mathrm{x}, \mathrm{x}+\mu$) introduce $2 N_{c}$ complex fermion a, a_{i}^{\dagger} right $(+)$ moving and b_{j}, b_{j}^{\dagger} left(-) moving fluxon

LINK:
$U_{i j}(x, x+\mu) \quad \rightarrow \quad \hat{U}_{i j}=a_{i}(x) b_{j}^{\dagger}(x+\mu)$
$\left\{a_{i}, a_{j}^{\dagger}\right\}=\delta_{i j} \quad\left\{b_{i}, b_{j}^{\dagger}\right\}=\delta_{i j}$
Local Gaue Operators

$$
\Omega_{i j}(x)=a_{i}^{\dagger}(x) a_{j}(x)+\cdots
$$

$$
\left[\begin{array}{cc}
a_{i} a_{j}^{\dagger} & a_{i} b_{j}^{\dagger} \\
b_{i} a_{j}^{\dagger} & b_{i} b_{j}^{\dagger}
\end{array}\right]
$$

Hilbert Space is a large qubit array of color vectors in 4 d space-time

D-THEORY: FERMIONS FOR GAUGE, SCALAR AND DIRAC LATTICE FIELDS!

see Square-Lattice Heisenberg Antiferromagnet at Very Large Correlation Lengths B. B. Beard, R. J. Birgeneau, M. Greven, and U.-J. Wiese Phys. Rev. Lett. 80, 1742 (1998)

QC MINKOWSKI DYAMICS

- Change 4 -th axis to real Time for Hamiltonian.
- Let short 5-th axis be field space (like "Domain Wall Fermion flavors)

$\hat{H}_{0}=-\frac{1}{4 g^{2}} \sum_{\square} \operatorname{Tr}\left[\hat{U}_{\square}+\hat{U}_{\square}^{\dagger}\right]+g^{2} \sum_{\langle x, y\rangle} \operatorname{Tr}\left[\hat{E}_{+}^{2}(x, y)+\hat{E}_{-}^{2}(x, y]+\right.$ quarks

Quantum Links: THE QCD ABACUS

$$
\hat{H}=\beta \sum_{x, \mu \neq \nu} \operatorname{Tr}\left[\hat{U}_{x, \mu} \hat{U}_{x+\hat{\mu}, \nu} \hat{U}_{x+\hat{\nu}, \mu}^{\dagger} \hat{U}_{x, \nu}^{\dagger}\right]+\sum_{x, \mu}\left[\operatorname{det} \hat{U}_{x, \mu}+\operatorname{det} \hat{U}_{x, \mu}^{\dagger}\right]
$$

circa 2400 b.c Abacus

circa 20xx a.d.

$+\mathrm{O}-\underset{\substack{\text { er } \\ \operatorname{det} U_{\mathrm{x}, \mu}}}{\longrightarrow+\mathrm{O}-+}$

From Bits to Qubits?

QCD Abacus*

* See THE QCD ABACUS: A New Formulation for Lattice Gauge Theories R. C. Brower https://arxiv.org/abs/hep-lat/9711027 Lecture at "APCTP-ICTP Joint International Conference '97 on Recent Developments in Non-perturbative Method" May, 1997, Seoul, Korea. MIT Preprint CTP 2693.

FERMIONIC QUBIT GATES

Each Fermion

On Each qubit

$$
\begin{array}{ll}
a^{\dagger} a+a a^{\dagger}=1 & a a=a^{\dagger} a^{\dagger}=0 \\
a^{\dagger}(\alpha|1\rangle+\beta|0\rangle)=\beta|1\rangle & a(a|1\rangle+\beta|0\rangle)=a|0\rangle
\end{array}
$$

$$
\left(a+a^{\dagger}\right)^{2}-1 \Longrightarrow H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

$\left(a^{\dagger}+a\right) / i \Longrightarrow Y=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$

$$
\left(1-a^{\dagger} a\right)+a^{\dagger} a\left(b+b^{\dagger}\right) \Rightarrow \operatorname{contr} \rightarrow \infty
$$

$\left(1-a^{\dagger} a b^{\dagger} b\right)+a^{\dagger} a b^{\dagger} b\left(c^{\dagger}+c\right) \Longrightarrow$ Toffoli

Classical Reversible Computing Conserving Energy R. Landauer IBM J journal of Research and Development, vol. 5, pp. 183-191, 1961

WHAT ABOUT ANTI-SYMMETRIC FERMIONIC FOCK SPACE?

Step \#1: PARA-STATISTICS:

D-Theory only require anti-commutator within each a's and b's set

$$
\begin{aligned}
& {\left[a_{i}^{\dagger} a_{j}, a_{p}^{\dagger} b_{q}\right] }=\left[a_{i}^{\dagger} a_{j}, a_{p}^{\dagger}\right] b_{q}+a_{p}^{\dagger}\left[a_{i}^{\dagger} a_{j}^{\not},\right. \\
&\left.b_{q}\right] \\
& \downarrow \downarrow \\
& {\left[E_{L}, U\right] }=-E_{L} U
\end{aligned}
$$

Step \#2; Jordan-Wigner:
Apply to Locally to each set of 3 a's and b's.

$$
\left.a_{1}^{\dagger}=\sigma_{1}^{+} \quad, \quad a_{2}^{\dagger}=-\sigma_{1}^{z} \sigma_{2}^{+} \quad, \quad a_{3}^{\dagger}=\sigma_{1}^{z} \sigma_{2}^{z} \sigma_{3}^{+} \quad \text { same for a } \rightarrow \mathrm{b}\right)
$$

PARA-STATISTICS \& JORDAN-WIGNER TO THE RESCUE

STARTING TO TEST REAL TIME QUBIT ALGORITHM

$$
\begin{gathered}
\text { FOR } \\
\text { U(I) QUANTUM LINK GAUGE THEORY }
\end{gathered}
$$

Joint Work with D. Berenstein (UCSB), Cameron Valier (BU) \& H. Kawai (BU)

$$
\begin{aligned}
\hat{H} & =\frac{e^{2}}{2} \sum_{\text {links,s}}\left(\sigma_{s}^{z}+\sigma_{s+1}^{z}\right)^{2}+\alpha \sum_{\text {links,s }}\left[\sigma_{s}^{+} \otimes \sigma_{s+1}^{-}+\sigma_{s}^{-} \otimes \sigma_{s+1}^{+}\right] \\
& -\frac{1}{2 e^{2}} \sum_{\Delta, s}\left[\sigma_{s}^{+} \otimes \sigma_{s}^{+} \otimes \sigma_{s}^{+}+\sigma_{s}^{-} \otimes \sigma_{s}^{-} \otimes \sigma_{s}^{-}\right]
\end{aligned}
$$

Few very simple kernels in Trotter factorization into Gauge invariant Unitary operators with very few Qubit width

Choose $2+1$ on $\mathrm{U}(1)$ Hamiltonian on a Triangular spacial lattice

To evaluate lattice: alternate between two coloring of triangles.

+ h.c

Total: about 15-20 consecutive gate operations (coherence time) per qubit per Trotter step

Estimate of current machines: 3 Trotter steps on Lattice

Extra dimension builds local field rep. from XYZ ferromagnetic chain

Using

$$
\begin{aligned}
& \sigma^{+} \otimes \sigma^{-}+\sigma^{-} \otimes \sigma^{+}=\frac{1}{2}\left(\sigma^{x} \otimes \sigma^{x}+\sigma^{y} \otimes \sigma^{y}\right) \\
& \left(\sigma^{z} \otimes 1+1 \otimes \sigma^{z}\right)^{2}=2\left(1+\sigma^{z} \otimes \sigma^{z}\right)
\end{aligned}
$$

The each links between two triangle are coupled by 2 Qubit ferromagnetic interaction operator to align them.

Plaquette

Still gauge invariant if broken vertically: few operations per qubit. (Not all to all)

Parameter fitting Two Triangle couple Hamiltonian needing 6 Qubits \& eigenvalues of 64×64 matrices

Just XXZ piece: need to avoid level crossings, close to XXX is better

Together with plaquette operator: Gap persists: suggests simulation will not be too polluted by UV

$$
\begin{gathered}
\mathcal{H}_{\triangle} \propto \sigma^{+} \otimes \sigma^{+} \otimes \sigma^{+}+\sigma^{-} \otimes \sigma^{-} \otimes \sigma^{-} \\
U_{\Delta}(t)=\exp \left(-i t H_{\Delta}\right)
\end{gathered}
$$

This is a rotation on a 2-plane of 8 dimensional Hilbert space (+++) rotating into (---).
Can be written in terms of a double control gate after some bit flips which need to be undone

Depending on details of architecture: it can take anywhere between 5 computing cycles and 20 (depth).

For experts: May be done efficiently with ancillas if Toffoli gates available.

TROTTER VS EXACT 2 COUPLED TRIANGLES

$\operatorname{Real}\langle\Psi(0)| U(t)|\Psi(0)\rangle \quad$ vs $\quad \operatorname{Real}\langle\Psi(0)|\left[U_{x y}(t / n) U_{E}(t / n) U_{\Delta}(t / n)\right]^{n}|\Psi(0)\rangle$

- Can you bosonize the quark fields?
- Can you demonstrate truncated field yield correct continuum limit
- What is the complexity of kernels for $\operatorname{SU}(3)$ QCD?
- Algorithmic experiments in small systems:

BACK UP SLIDES

SOME HISTORICAL REFERENCES ON EUCLIDEAN QUANTUM LINKS (AKA D-THEORY)

- D. Horn, Finite Matrix Model with Continuous Local Gauge Inv. Phys. Lett. BI 00 (I98I)
- P. Orland, D. Rohrlich, Lattice Gauge Magnets: Local Isospin From Spin Nucl. Phys. B338 (I990) 647
- S. Chandrasekharan, U-J Wiese Quantum links models: A discrete approach to gauge theories Nucl. Phys. B492 (I997)
- R. C. Brower, S. Chandrasekharan, U-J Wise, QCD as quantum link model, Phys. Rev D 60 (I999).
- R. C. Brower, The QCD Abacus: APCTP-ICPT Conference, Seoul, Korea, May (1997)
- R. C. Brower, S. Chandrasekharan, U-J Wiese, D-theory: Field quantization ... discrete variable Nucl. Phys. B (2004)

BUT WILSON'S LGT CAN NOT DO IT ALL

- Problem 1: LGT on curved Riemann Manifolds*: e.g. CFT on boundary of Anti-de-Sitter space. Quantum Finite Elements should solve this?
- Problem 2: Chiral Gauge Theories\#: Many be topological methods in extra dimension?
- Problem 3 : Minkowski Space is exponential hard @: e.g.real time jets, scattering, sign problem of baryon chemical pot at finite T etc.

```
*https://arxiv.org/abs/1610.08587 Dirac Fermions on Simplicial Manifold
https://arxiv.org/abs/1803.08512 Phi 4th on Riemannian Manifold
# https://arxiv.org/pdf/1809.11171 A non-Perturbative Definition of the Standard Model ?
@ This workshop?
```


Oak Ridge National Laboratory's 200 petaflop supercomputer

"Lattice Gauge Theory Machine" 200,000,000,000,000,000 Floats/sec 9,216 IBM POWER9 CPUs and 27648 NVIDIA GPUs
Each GPU has 5120 Cores and total of 580,608,000,000,000 transistors

UNIVERSALITY: Tools \& Tricks

I. Lattice: Discretization: (Graphs \& Simplicial Structure)

- Subgroups of Space-Time Isometries

2. "Field Truncation" (Group Algebra \& IR expansion)

- Discrete Manifolds for Global/Gauge/Spinors

3. "Dualities" (Hodge star \& Dim Reduction)

- Gauge/Spin \& Ads/CFT \& Gauge/Gravity etc

EQUILATERALTRIANGULATION

Triangle case $p=3$

Preserves Discrete
Subgroup of Isometries

$\frac{1}{p}+\frac{1}{q}>1 / 2$
de Sitter \mathbb{S}^{2}
$\frac{1}{p}+\frac{1}{q}=1 / 2 \quad$ flat $\quad \mathbb{T}^{2}$
Hyperbolic $\mathbb{A} d S^{2}$
vertex $\quad q=3,4,5$
vertex $\quad q=6$
vertex $q=7,8,9, \cdots$

DISCRETE ISOMETRIES \& THETRIANGLE GROUP

$\frac{\pi}{p}+\frac{\pi}{q}+\frac{\pi}{r} \quad \begin{cases}>\pi & \text { Postive curvature } \\ =\pi & \text { Zero curvature } \\ <\pi & \text { Negative Curvature }\end{cases}$

$(2,3,5)$
120 element
Icosahedral in $\mathrm{O}(3)$

$(2,3,6)$
Triangle Lattice
on Euclidean \mathbb{R}^{2}

$(2,3,7)$
Subgroup of Modular
Group on \mathbb{H}^{2}
https://en.wikipedia.org/wiki/(2,3,7)_triangle_group

$$
q=7
$$

Triangle Group Tessellation: Preserve Finite subgroup of the Modular Group

$$
\begin{gathered}
z \rightarrow \frac{a z+b}{c z+d} \quad a d-b c=1 \\
a, b, c, d \in \mathbb{Z} \bmod q
\end{gathered}
$$

Are these Tessellation"Tensor Networks" ? YES: See Daniel Harlow's Slide from Wednesday

Can we do QC lattice Field Theories in AdS? Classical YES /QC Maybe

Triangle Group Tiling

(r, p,q) - $(2,3, q)$
Equilateral Case

$$
\Delta(p, q, r)=\left\{a, b, c \mid a^{2}=b^{2}=c^{2}=A^{p}=B^{q}=C^{r}\right\}
$$

3 Spheres and 4D Radial Simplicial Lattices


```
Aristotle's 2% Error!
```


Fast Code Domains of
Regular 3D Grids on Refinement

The full symmetry group of the 600-cell is the Weyl group of H_{4}. This is a group of order 14400. It consists of 7200 rotations and 7200 rotation-reflections. The rotations form an invariant subgroup of the full symmetry group.

FROM QULINKS TO QUBITS

» Universally equivalent lattice fields theories

- "Exact" Symmetries respected as well as possible
» Discretize Theory on any computer:
- Classical: Discrete Lattice for space time (Ist quantization)
- Quantum (Quibts): Discrete Fields (2nd quantization)
» Euclidean to Minkowski: Fermionic Bits to Qubits.
» Test on IMB Q
- All gauge kernel for $\cup(I)$ pure gauge theory.

