Dynafed as a DTN/FPC agent

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Dynafed and TPC

Dynafed does “storage federations”, used so far only for HTTP

Constantly monitors a set of endpoints
Makes redirection choices for file GET/PUT requests

Effectively fakes the existence of a friendly namespace to
browse

It uses the same Apache frontend used by DPM, which does have
the third party copy (normally disabled)

At some point we were reasoning... what if we enable it? How
much effort will it need?

This entered in a more generic round of refurbishment of the
DMLite API, adding TPC calls to it

TPC Features in Dynafed

The core implementation is not yet polished, yet it works sufficiently well to give a
preview. The features are pretty original

The “redirector” of an HTTP federation accepts COPY requests
Can redirect them to an endpoint known to support them

Can tunnel the data if no suitable endpoint is able to process COPY requests. In
this case it can silently translate the protocol on the fly, e.g. a 3cp http-
>gridftp or xrootd->http or others

An HTTP federation becomes able to fulfil COPY requests, independently from the
mix of endpoint types that it contains, e.g. DPM, dCache, AWS S3

An HTTP federation can work as a scalable file transfer agent

The interesting part is that it's browseable, Dynafed style, and that it knows in realtime
the upness of its known, federated endpoints

Someone commented that this is a Data Transfer Node (DTN). Surely a flavour of it

o Knows
Federates
Drives TPC
Tunnels TPC

Dynafed managing TPCs

« “DTN?” style operation, manages TPCs

Can forward a TPC request to a
capable host or tunnel it

Enable data movement for non-TPC
storage (e.g. cloud)

Enable cross-protocol data
movements

endpoints stay
independent

xfers to/from any
destination
cross-protocol

A scalable geographical agent that
manages 3rd-party copy tasks on behalf
of authorised requestors

Can work globally, regionally, individually

All the federation-related features (e.g.
browsing, locating) are untouched

A smart transfer agent

There are many combinations, including

file PUT

.’f’.k lE;
®

A can copy,

the cross-protocol ones forward %
e.g. COPYing from gsiftp to root or SgPi request

HTTP, and others
Here’s a simple one. Dynafed federates A

A client (e.g. FTS) asks Dynafed to COPY
a file from site A to site B

If site A is able to do it, then the COPY
request is forwarded to A

(the COPY performance markers are
then forwarded backwards, from A to
the client)

If site A can’t do it (e.g. because it's an S3

COPY A—>B

bucket) then Dynafed will tunnel the COPY A can not copy,

(and send the performance markers
back to the client)

tunnel it

Colocation - deployment matters

An interesting use case Site (QNL?,RALZ)
arises when Dynafed is co- A
located with the storage

COPY requests will work

even if the storage is not
accessible from outside A>B

Funnily enough, the gETS A can not
“datamover process” does ool it
not even need to run in the

dynafed machine. It's just

a little script.

file COPY
wif supported
n

B

Dynafed, lcgdm-dav and DPM

Dynafed shares the frontend Apache modules with DPM

The bulk of this work is exactly there, activated by an Apache flag (normally off, for the
DPM normal behaviour)

This flag makes mod_lcgdm_dav simply forward the internal TPC calls to the dmlite
layer, where dmlite plugins can give their implementation

Instead by now TPCs are implemented privately by the various frontends, xrootd,
apache, gridftp
We just saw a preview of a simple Dynafed implementation

In the future, we may think at doing a similar thing for DPM, and have just one
mechanism that manages TPC for all protocols (except gridftp | believe)

One mechanism means that the DOME daemon in DPM may properly queue and
schedule TPCs, like it does for checksums

That would mean preventing TPC overload, not just relying on FTS to
heuristically detect it

DOME already has all the low level components to do this. This is tempting and
relatively cheap to implement. Will see next year.

Work In progress

Verify all the main combinations, most of them work
Transferring the “FTS/GFAL performance markers works
Verify that bearer tokens are properly handled

Improve the error reporting

A few minor issues in gfal-copy
« the envvar BEARER TOKEN breaks S3 presigned URLs

need to add support in gfal-copy for multiple tokens
(hopefully not through envvar hell)

Testing, testing, did | say it? Testing!

