
ARC Cache

David Cameron
University of Oslo

DOMA Access, 16.10.18

1

ARC Cache intro
● ARC CE maintains an internal cache of

input files on a shared filesystem
● Before submitting to the batch system

input files for jobs are downloaded to
the cache by the CE

○ Then symlinked to the job’s working directory
○ The download is skipped if the file is already

in the cache

● Cache space is managed using LRU with
high and low watermarks in arc.conf

2

ARC Cache usage
● Where is it useful?

○ Sites with a shared filesystem and no local grid storage

● Currently used in production for ATLAS at NDGF
computing sites and several HPCs in Europe and
Asia

○ Piz Daint (CH), SuperMUC (DE), IT4I (CZ), MareNostrum (ES),
Lustiania (ES), Tianhe-1 (CN)

● Requires jobs submitted in push mode to ARC CE
via ARC Control Tower (aCT)

○ aCT picks jobs from Panda, then submits to CE with correct
job requirements (wall time, memory etc) and input files
defined

3

cache

ARC Cache R&D
● How to use in a pilot model, or without ARC CE?

○ Have the pilot download data with “arccp -y /cache”
○ Requires a tool to manage cache space (cache-clean script used by ARC CE)

● Integration into Rucio
○ Publication of contents as a “volatile” RSE
○ ARC CE transfer system as an alternative transfer tool to FTS, to pre-populate cache

4

Study of cache hit rates
● Data was taken from data transfer logs of each job from one ARC CE at

SiGNET (NDGF site in Slovenia)
○ Mix of production and analysis workloads

● Time period 1-12 April 2018
● Only data files

○ Excluding pilot tarball, wrapper etc used by every job

5

Raw numbers
● 14177 unique files were downloaded to cache
● 68387 files were already cached (each cache hit of the same file is counted)
● 36179 unique files were already cached
● Naive cache-hit ratio of 82.8%

○ Starting from a warm cache

6

In more detail
● Most used files (hit count, filename)

1548 panda.0408182750.492125.lib._13669340.13145195029.lib.tgz
1150 AOD.05536542._000001.pool.root.1
1132 panda.0409081432.8074.lib._13669277.13147637952.lib.tgz
707 panda.0412170344.283124.lib._13702696.13174834478.lib.tgz
689 panda.0408015155.51359.lib._13665634.13142602942.lib.tgz
428 panda.0406213309.751814.lib._13660211.13138024850.lib.tgz
419 panda.0411155552.708753.lib._13694942.13168445743.lib.tgz
383 panda.0412130327.756600.lib._13701264.13172797838.lib.tgz
275 panda.0406154926.166815.lib._13658415.13136095000.lib.tgz
248 group.phys-gener.madgraph5223p4.363608.MGPy8EG_N30NLO_Wenu_Ht140_280_13TeV.TXT.mc15_v1._00001.tar.gz
202 panda.0404172008.118576.lib._13630830.13123934780.lib.tgz
199 panda.0406114855.300231.lib._13656780.13134782656.lib.tgz
184 panda.0406142042.481548.lib._13657959.13135685021.lib.tgz
182 panda.0402195751.863505.lib._13630124.13096051421.lib.tgz
173 panda.0406140438.591229.lib._13657774.13135439801.lib.tgz
163 panda.0406165914.440641.lib._13659017.13136460875.lib.tgz

7

panda...lib.tgz is user code required
by every job in an analysis task

Excluding lib.tgz
1150 AOD.05536542._000001.pool.root.1
248 group.phys-gener.madgraph5223p4.363608.MGPy8EG_N30NLO_Wenu_Ht140_280_13TeV.TXT.mc15_v1._00001.tar.gz
138 group.phys-gener.madgraph5223p4.363605.MGPy8EG_N30NLO_Wenu_Ht70_140_13TeV.TXT.mc15_v1._00001.tar.gz
135 EVNT.740625._000008.pool.root.1
132 group.phys-gener.sherpa020201.363491.Sherpa_221_NNPDF30NNLO_lllv_13TeV.TXT.mc15_v1._00001.tar.gz
100 EVNT.04972714._000023.pool.root.1
 97 EVNT.740625._000007.pool.root.1
 91 EVNT.740625._000009.pool.root.1
 79 EVNT.04972714._000022.pool.root.1
 71 EVNT.740625._000001.pool.root.1
 68 EVNT.740625._000010.pool.root.1
 66 EVNT.04972714._000036.pool.root.1
 62 EVNT.04972714._000026.pool.root.1
 61 HITS.10701323._008539.pool.root.1
 60 EVNT.740625._000004.pool.root.1

Excluding lib.tgz gives 48317 cache hits: 77% cache hit

8

Analysis test jobs input

Event generation input

HammerCloud tests input

Statistics by datatype

 4944 DAOD
 3329 AOD
 1487 EVNT
 1262 HITS
430 panda
303 data17_13TeV
 95 user
 76 TXT
 59 DRAW_ZMUMU
 32 DRAW_RPVLL
 22 RAW
 21 log
 19 data16_hip8TeV
 11 RDO
 10 DRAW_EGZ

Unique files read from
cache

 19396 DAOD
 9894 AOD
 3407 EVNT
 1560 HITS
 1186 panda
 286 data17_5TeV
 215 user
 72 DRAW_ZMUMU
 58 data17_13TeV
 43 RDO
 29 DRAW_EGZ
 19 group
 13 log

Files downloaded to cache but not used
(within the time period of the study)

DAOD: 79.7
AOD: 74.8

EVNT: 69.6
HITS: 55.3

panda: 73.4

% chance of being read
from cache at least once

9

Cache details
● SiGNET cache is 250TB
● Ceph filesystem, mounted on the worker nodes (jobs access data directly from cache)
● Turnover is 5 days, i.e. 50TB/day, 600MB/s average download rate

pikolit ~ # /usr/libexec/arc/cache-clean -s -c /etc/arc.conf

Usage statistics: /ceph/grid/cache
Total deletable files found: 240657 (9681 files locked or in use)
Total size of deletable files found: 217 TB (16 TB locked or in use)
Used space on file system: 583 TB / 697 TB (83.63%)
At size (% of total) Newest file Oldest file
21 TB (10%) Fri Apr 20 15:11:05 2018 Fri Apr 20 03:57:00 2018
43 TB (20%) Fri Apr 20 03:56:59 2018 Thu Apr 19 18:57:36 2018
65 TB (30%) Thu Apr 19 18:57:36 2018 Thu Apr 19 11:38:04 2018
86 TB (40%) Thu Apr 19 11:37:57 2018 Wed Apr 18 17:49:19 2018
108 TB (50%) Wed Apr 18 17:49:18 2018 Wed Apr 18 08:45:04 2018
130 TB (60%) Wed Apr 18 08:45:04 2018 Tue Apr 17 20:39:44 2018
152 TB (70%) Tue Apr 17 20:39:44 2018 Tue Apr 17 05:25:14 2018
173 TB (80%) Tue Apr 17 05:25:14 2018 Mon Apr 16 22:15:03 2018
195 TB (90%) Mon Apr 16 22:15:00 2018 Mon Apr 16 15:29:51 2018
217 TB (100%) - Sun Apr 15 14:16:16 2018

10

Caching strategy
● Blindly caching all input files has been the ARC strategy for years but still seems to mostly work with

current ATLAS jobs
○ In fact previous studies showed ~50% hit rate so caching is even better for current workflows

● However it can be that some jobs (eg analysis) read small fractions of the file - here byte-level
caching is better but only if those small fractions are re-read

● At SIGNET there are two modes (two Panda queues) working in parallel for analysis:
○ Direct: panda estimates workdir size with all the input/output files - this is kept low at 5GB and

forces most of the jobs to use direct I/O. It forbids large jobs that need local inputs
○ Caching: all the other jobs, where posix I/O is needed. those are also typically complicated (eg

reprocessing, mc reco), where full input files are read
● The direct queue processes 3x more jobs than the caching one
● Note the direct queue does not count towards the previous statistics, which may distort the numbers

11

Conclusion
● With NDGF’s “data lake” (distributed dCache) it is essential to cache locally to

jobs
○ 10+ years experience with ARC cache

● A model like ARC cache is also suitable for sites without grid storage or WN
network connectivity like HPCs

● Issues with this model
○ If there are too many inputs to download, they saturate the WAN and keep cores unused
○ If the cache is not sized correctly it can have a fast turnover so some files can be downloaded

many times over a short period
○ We do not yet use cached files locations in brokering - this can randomly distribute jobs using

the same input over many centres

12

