
DPM volatile pools

!1

After only ~18 years

Volatile History
• DPM inherited its db structure from CASTOR, around 2000. It always had definitions for volatile

pools, traditionally unused
• Evident that they were foreseen for tape staging, which never happened
• The design was meant to accommodate “stager processes”, quite CASTOR-ish but not really

DPM-ish for that time. Would have been bizarre for small/medium sites of 0.1-10PB

• A few years later (2003) the xrootd framework was doing tape staging using a callout
mechanism and an external purging queue. This could work for any external file repo, not only
tapes (which are not interesting for DPMs). Immediately entered production for BaBar, at SLAC
and various tier-1s

• In 2008 the xrootd framework was using this mechanism with an experimental xrootd fed as
data source (cfr. ALICE)

• In 2018… why not merging the two ideas, and give to DPM a callout+purging queue
mechanism (xrootd-like, and properly queued) to be used with DPM volatile pools and external
arbitrary data repos?

• The substitution (2016-2017) of the older “DPM/DPNS daemons” with the new DOME daemon
was the right occasion. Clean code, no awkward CASTOR-isms around, much easier job.

!2

File pulling in DPM volatile pools
• We can then mark a pool as V, meaning that the

content is disposable
• DOME has two callouts for these activities:

• stat() which is launched from the head node
• pull() which is executed in disk servers
• These usually are scripts pointing to an

external system. The final scripts can be
customised trivially, using tools like gfal-
copy (or dd like in the examples :-P)

!3

File pulling implemented
• DOME already had internal components to run nuke-proof callouts (e.g.

checksums)
• DOME already had internal components implementing a fast, auto-

regenerating in-memory queue to queue and schedule slow external
activities. It’s in-memory and survives headnode restarts through a
notification mechanism

• DOME got one more instance of such queue, to manage file pulls in
disk servers. This allows the sysadmin to prevent overloads and
requests storms, by configuring upper limits

• DOME got a dead-simple mechanism to make space in volatile pools
when needed, by deleting older files

• That’s it, this is a full file caching mechanism with robustness in mind.
Released in DPM since ~Q2/2017.

!4

Xrootd	daemon	

HTTP	plugin	
XrdHTTP	

REST	commands	
/domehead/…	

Xrootd	Redirector	
/dpm/…	

MySQL	

DOME	(head)	

Chksum	
queue	

Filepulls	
queue	

Task	
Executor	

AuthN	

Request	
Logic	

Metadata	
cache	

Workers	

Ext	Stat()	
requests	
(configurable	
script)	

Timed	
Logic	

HTTPD	

GridFTP	

HTTP	redirector	
/dpm/…	

GSIFTP	redirector	
/dpm/…	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Requests	to	Disk	servers	(DOME	REST)	

Requests	to	
DOMEHEAD	

DOME in a DPM head node

!5

Xrootd	daemon	

HTTP	plugin	
XrdHTTP	

REST	commands	
/domedisk/…	

DOME	(disk)	

Task	
Executor	

AuthN	

Request	
logic	

Workers	

Ext	Pull()	
requests	
(configurable	
script)	

Xrootd	Data	access	
/<diskpaths>/…	

Dome_checksum	
Script	(bundled	with	DOME)	

Timed	
Logic	

Requests	to	
HEAD	

Disk	
Pools	

DOMEAdapter	can	do	IO	
HTTP	on	/<diskpaths>/…	+	security	token	
substitutes	RFIO	

Requests	to	HEAD	

HTTPD	

GridFTP	

HTTP	Data	access	
/<diskpaths>/…	

GSIFTP	Data	access	
/<diskpaths>/…	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

DOME in a DPM disk server

!6

Assumptions on DPM caches
1. A cache is an automatic component that keeps useful data, while discarding less useful data. It’s

meant to be closer to the data clients (according to some metrics, e.g. throughput, latency, Kms) 

2. Access to the cache has to be faster than remote access for a given access pattern
1. Sometimes true in HEP, depending on the read technique used, e.g. sequential, random, or

informed prefetching (e.g. TTreeCache buffers)

4. To bring some advantage, the same data has to be accessed multiple times by clients
• In HEP workflows this is true only for certain use cases, e.g. an analysis working group
• Other HEP use cases instead read data embarrassingly once. These do not get performance

improvements from caches
• Pre-placement of data is just one access in a convenient moment

5. In the case of a full-file cache a large portion of each file must be needed by clients
• Very often true for HEP

• On top of these, there may be other advantages beside performance, e.g. volatility=less site
responsibility on hosted data. This kind of aspects are difficult to evaluate.

!7

Full-file caching
• DPM caches whole files
• A job opening a ‘cold’ file starts when the file has come (at the

speed of a file transfer), then processes at normal ‘local’ speed
• Pays the external file xfer latency once. Xfers between sites

can be pretty fast.

• Other systems instead cache chunks, the job starts the
processing immediately but at the speed of remote data access
(for a ‘cold’ file)
• Hence subject to the efficiency of the job’s data access pattern
• Pays the external network latency for each external

transaction (varying from tens to millions)

!8

DPM file caches
• DPM caches whole files, tape-system-like, different from other chunk-based

approaches, e.g. XCache
• The good points are:

• Predictable behaviour, either the file is there or not
• Very simple interfacing with any external system, customisable
• Sysadmin-friendly, e.g. well fitting questions like “does our SE have this

file”
• How efficient is it? Interesting and difficult to measure, as it depends largely

on the access pattern
• For the ROOT TTree access pattern I (FF) had measured in 2004 (!) it can

be sufficiently efficient, and TTree has not changed. I would like to see solid
evaluations based on today’s HEP data and real experiment patterns

• How does it perform versus chunk-based caches? Also this largely depends
on the access pattern, it could be better in some cases, worse in others

!9

Strong points about DPM caches
• It’s there, in the production DPM since mid-2017
• It’s a robust thing, easy to understand, easy to integrate in computing models, as a well-

defined block
• Fully integrated in DPM (with DOME on), administered with the new DPM admin tools and

following ideas that are familiar to sysadmins
• Works for all the protocols interchangeably: gsiftp, xrootd, http
• Also authZ/authN is the same… x509, voms, macaroons, …

• Runs on already existing DPMs, no need for parallel installations or new machines, just
(re)configuration of a pool

• Full-file makes it easy to federate. One can mix caches and normal storage in the same
federation, and redirect to the closest hot cache

• DPM supports also remote pools, residing in other sites. These are good candidates to
become volatile caching pools residing in different sites

• If the federation tech is Dynafed/HTTP then the integration with Cloud storage is seamless

• Will be interesting to see use cases, ideas and measurements for new real cases

!10

