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1. Introduction 

Particles in electric and magnetic fields: Lorentz-force 

( )vF e E B= ⋅ + ×
G G GG

 

Energy increase is related to longitudinal electric fields: 

( )vF ds e E ds B ds e E ds e U⎛ ⎞⎜ ⎟
⎝ ⎠

= ⋅ + × = ⋅ = ⋅∫ ∫ ∫ ∫ &

G G GG G G Gi i i  

Beam deflection due to perpendicular fields, has to cancel centrifugal force: 

( )
2

0 0

! vF m c e E c B m
R

γ β β γ⊥ ⊥ ⊥= = ⋅ + × =
G GG G G�  

Electric stiffness and magnetic stiffness: 

1
v

e p e ER RB ⊥⊥ = =  

 Ultrarelativistic particles: 1 Tm 300 MV mv R B R Ec ⊥⊥≈ ⇒ ⇔ ≈=  
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2. Magnets 
2.1. General remarks on the calculation of magnetic fields 

The calculation of magnetic fields is based on Maxwell’s equation 

H j∇ × =
G G G

. 

We are interested in the magnetic field close to the particles orbit where 0j =
G

, thus 

yielding     0H∇ × =
G G

. 

H
G

 may therefore be expressed in terms of a scalar potential ϕ  by 

H = −∇Φ
G G

,  giving 0ΔΦ = . 

The magnetic field usually is generated by an electrical current I in current carrying 

coils surrounding magnet poles made of ferromagnetic material. A ferromagnetic re-

turn yoke surrounds the excitation coils providing an efficient return path for the 

magnetic flux. 
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The magnetic potential Φ  is defined by its equipotential lines in the transverse plane 

and therefore by the surface of the ferromagnetic poles. Due to the relation 

0 rB Hμ μ=
G G

, 

the magnetic field in the gap of a magnet may be calculated from a closed loop 

integral 

0 E
gap yoke

n I H d s H d s H⋅ = ⋅ = ⋅ +∫ ∫ ∫
G GG Gv , 
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where n is the number of windings and I the current of the excitation coil of the mag-

net. At the surface of the magnetic poles, the continuity relation gives 

0 0
1

E E
r

H H H H
μ

= ⇒ � . 

Assuming a very large permeability rμ , the second integral term may be neglected. 

We finally obtain for the magnetic field inside the gap 

0
gap

B d s n Iμ⋅ = ⋅ ⋅∫
G G  

Concentrating on the major types of magnets (so called upright magnets) mainly used 

in particles accelerators and beam transport lines, it is sufficient to define the vertical 

component ( )zG x  of the magnetic field along the horizontal axis of the magnet 

(where we put 0z = ) and to assume a constant field distribution along the longitudin-

al axis ( 0B s∂ ∂ =
G

). This leads to the set-up 
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( , ) ( ) ( )z zB x z G x f z= + , 

and with B = −∇Φ
G G

, one has 

( , ) ( ) ( )z zx z B dz G x z f z dzΦ = − ⋅ = − ⋅ − ⋅∫ ∫ , 

and therefore 
2

2

( ) ( ) 0zd G x d f zz
d x d z

ΔΦ = − − =  

2 2
2

2 2

( ) 1 ( )( )
2

z zd G x d G xf z z dz z
d x d x

⇒ = − ⋅ = −∫  

Finally, we obtain for the scalar potential of the magnetic field: 

2
3

2

1 ( )( , ) ( )
6

z
z

d G xx z G x z z
d x

Φ = − ⋅ + ⋅  
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2.2. Particle Beam Guidance 

Guide fields are used to deflect particles along a predefined path. These fields, gener-

ated by Dipole Magnets have to be homogenous, leading to the set-up 
2

0 2

( )( ) const. 0z
z

d G xG x B
d x

= = ⇒ =  

The corresponding magnetic potential follows to 

0( , )x z B zΦ = − ⋅ , 

defining the profile of the magnet poles to flat parallel poles at a distance h:  

 



Accelerator Physics 
 

Terascale Accelerator School 2008                                                                                        W. Hillert 9

Typical types of dipole magnets are the C-Magnet, the H-Magnet and the Window-

Frame Magnet: 

 
                  C-Magnet H-Magnet   Window-Frame Magnet

 

The magnetic field inside the gap is related to the current of the coils by 

0 0
n IB

h
μ ⋅

=  

The strength of a dipole magnet is usually normalized to the particles momentum, 

giving the inverse bending radius 1 R  or the curvature κ : 

0
0

1 e e n IB
R p p h

μκ ⋅
= = =  
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2.3. Particle Beam Focusing 

Focusing fields are used to keep the particle beam together and to generate specifical-

ly desired beam properties at selected points along a beam transport line. 

We need a magnetic field which increases linearly with increasing distance from the 

axis, leading to the set-up: 

( ) with z
z

BG x g x g
x

∂
= ⋅ =

∂
 

generated by Quadrupole Magnets. The corresponding potential follows to 

( , )x z g x zΦ = − ⋅ ⋅ , 

defining the profile of the magnet poles to four hyperbolic poles 
2

0( )
2
az x

g x x
Φ

= ± = ±
⋅

 

at a distance 02a g= Φ  from the axis. 
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The magnetic field inside the gap is determined from the gradient of the magnetic 

potential, giving:  andx zB g z B g x
x z

∂Φ ∂Φ
= − = ⋅ = − = ⋅

∂ ∂
 

The “restoring” force acting on the particles is 

( ) ( )ˆ ˆv v x zF e B e g xe z e= ⋅ × = ⋅ −
G GG  

A quadrupole magnet is therefore focusing only in one plane and defocusing in 

the other; depending on the sign of g. 
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The g-parameter may be related to the current of the coils by evaluating the closed 

loop integral 
1 2 0 1

0 0 0
0 1 2 0

En I H d s H d s H d s H d s H d s⋅ = ⋅ = ⋅ + ⋅ + ⋅ ≈ ⋅∫ ∫ ∫ ∫ ∫
G G G G GG G G G Gv , 

 

One obtains with 
0

gH d s r d r
μ

⋅ = ⋅
G G :   0

2

2 n Ig
a

μ⋅ ⋅ ⋅
=  

Again we would like to normalize g to the particles momentum, giving the quadru-

pole strength k:    0
2

2e e n Ik g
p p a

μ ⋅
= =  
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The focal length of a thin quadrupole magnet of length L can be derived from the def-

lection angle α of the particles beam and its relation to the quadrupole strength k, 

tan x
f

α =  

( )
tan

z

L L e g x L xk L
R p e B p

α = = = =  

 

giving:    1 k L
f

= ⋅  

Here we have assumed the length L to be short compared to the focal length f such 

that R does not change significantly within the quadrupole magnetic field. 
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2.4. Correction of Chromatic Errors 

To correct focusing errors of the quadrupole magnets we need the nonlinear magnetic 

fields of Sextupole Magnets, in which the field increase is quadratic with increasing 

distance from the axis: 
2 2

2
2 2

1 ( )( ) ´ with ´
2

z z
z

B d G xG x g x g
x d x

∂
= ⋅ = =

∂
 

This setting yields ( ) 0f z ≠ ! 

We will therefore expect a coupling of particles motion in the horizontal and 

vertical plane due to the z-dependence of the vertical field. 

From the potential equation we obtain 

( )3 21( , ) ´ 3
6

x z g z x zΦ = ⋅ − ⋅ ⋅ , 

defining the profile of the magnet poles to 
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2 2 3
02( )

3 ´ 3 3
z z ax z

g z z
Φ

= ± ± = ± ±  

at a distance 3
06 ´a g= Φ  from the axis. 
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Again the magnetic field is determined from the gradient of the magnetic potential, 

giving: 

( )2 21( , ) ´ and ( , ) ´
2x zB x z g x z B x z g x z

x z
∂Φ ∂Φ

= − = = − = −
∂ ∂

 

The g’-parameter may be related to the current of the coils in the same manner as it 

was derived for the quadrupole magnets, yielding 
2

02 3´ 6zB n Ig
x a

μ∂
= =

∂
 

Normalizing g’ to the particles momentum, we obtain the sextupole strength 

0
3

6´e e n Im g
p p a

μ
= = . 
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2.5. Multipole Field Expansion 

We will now derive a general form of the magnetic potential Φ  using a cylinder 

coordinate system, in which the Laplace equation reads 
2 2 2

2 2 2 2

1 1 0
r r r r zϕ

∂ Φ ∂Φ ∂ Φ ∂ Φ
ΔΦ = + + + =

∂ ∂ ∂ ∂
 

A useful setup of Φ  is a Taylor expansion with respect to the reference path (r=0), 

neglecting the z-dependence of the magnetic potential: 

0 0

1( , ) ( , )
!

n in
n n

n n
r c r e r

n
ϕϕ ϕ

> >

Φ = − = Φ∑ ∑  

Inserting this set-up into the Laplace equation, we get 
2

2

1 ( 1) 0
!

n in
n

n

n n n n c r e
n r

ϕ− + −
=∑  

Every multipole nΦ  is therefore a valid solution of the Laplace equation. 
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In cartesian coordinates, the multipoles of the magnetic potential read 

( ) ( ) ( )
0

( , )
! ! !

n
n kn kn n

n
k

c cx z x iz x iz
n n k k

−

=

Φ = − + = −
− ⋅∑  

Both the real and imaginary solutions are independent solutions: 

[ ] ( )
( ) ( )

[ ]
( ) ( )

( ) ( )

/ 2
2 2

0

11 / 2
2 1 2 1

1

1
Re ( , )

2 ! 2 !

1
Im ( , )

2 1 ! 2 1 !

kn
n k k

n n
k

kn
n k k

n n
k

x z a x z
n k k

x z b x z
n k k

−

=

−+
− + −

=

−
Φ = − ⋅ ⋅ ⋅

− ⋅

−
Φ = − ⋅ ⋅ ⋅

− + ⋅ −

∑

∑
 

Real and imaginary solutions differentiate between two classes of magnet orientation: 

• the imaginary solution has mid plane symmetry Im ( , ) Im ( , )x z x zΦ = − Φ −  and 

no horizontal field components in the mid plane → upright magnets 

• the real solution has mid plane symmetry Re ( , ) Re ( , )x z x zΦ = + Φ −  and  not 

vanishing vertical field components in the mid plane → rotated magnets 
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The magnetic field components for the nth order multipoles are derived from 

upright magnets: rotated magnets: 

Im , Imnx nzB B
x z

∂ ∂
= − Φ = − Φ

∂ ∂
 Re , Renx nzB B

x z
∂ ∂

= − Φ = − Φ
∂ ∂

 

 
A particle traveling in the horizontal mid plane through an upright magnet will re-

main in the horizontal plane! 

We finally derive for the potential Φ  and the magnetic field B of the nth multipole by 

setting n na e p S= − ⋅ , n nb e p S= ⋅  with the multipole strengths , , ,nS k m rκ= − : 

Dipole 1 z x
e

p zxκ κ− −Φ =  

Quadrupole ( )2
2 21

2 ke k x zxp z− − +− Φ =  

Sextupole ( ) ( )3 2 32
3

11 36 36m x x xze z zp m− Φ = − + −−  

Octupole ( ) ( )4 2 4 3
4

321 624
1

6r x x z re
p x zz x z− Φ = − −− + +  
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Upright Magnets: 

Dipole 1 ˆx z
e B ep κ= −

G
 

Quadrupole 2 ˆ ˆx z
e B k z e k xep = +

G
 

Sextupole ( )2 2
3

1ˆ ˆ2x z
e B m x z e m x z ep = + −

G
 

Octupole ( ) ( )2 3 3 2
4

1 1ˆ ˆ3 36 6x z
e B r x z z e r x x z ep = − + −

G
 

 

Rotated (Skew) Magnets: 

Dipole (900) 1 ˆz x
e B ep κ=

G
 

Quadrupole (450) 2 ˆ ˆx z
e B k xe k z ep = − +

G
 

Sextupole (300) ( )2 2
3

1 ˆ ˆ2 x z
e B m x z e m x z ep = − − +

G
 

Octupole (22,50) ( ) ( )3 2 2 3
4

1 1ˆ ˆ3 36 6x z
e B r x x z e r x z z ep = − − + −

G
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2.6. Effective Field length 

The assumption of a constant field distribution along the longitudinal axis 

( 0B s∂ ∂ =
G

) is not valid in general due to the fringing fields at the end of the magnets. 

In order to simplify the calculation of the optics of particle accelerators, an effective 

field length leff of each magnet is usually defined, calculated from the path-integral 
 

0 effB d s B l
∞

−∞

⋅ = ⋅∫
G GG

 
 

and approximating the real longitudinal field by a rectangular shaped profile. 
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3. Linear Beam Optics 
3.1. Equations of Motion in a moving Reference System 

In order to have a meaningful formulation of the particles trajectories in the vicinity 

of a once defined ideal path, we will use a moving orthogonal, right-handed coor-

dinate system (x, s, z) that follows an ideal particle traveling along its ideal path: 

 
We will concentrate on ideal orbits, laying within the horizontal plane, therefore 

( ) ˆ ˆzxR x e zr e+ +⋅ ⋅=
G  
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Using this reference system moving with s R ϕ= ⋅ �� , we obtain the following time de-

rivatives of the coordinate vectors 

2

2
2

2

ˆ ˆ

ˆ ˆ ˆ

ˆ

0

ˆ

ˆ

ˆˆ

ˆ

ˆ

ˆ

z

s s x x xx

sxs sx s

se e
R

se e ee R

sse e
R e e e

e

e
R

ϕ

ϕϕ

ϕ+ +

⎛ ⎞= −

⎫=
⎛ ⎞= − = −= ⎜ ⎟
⎝ ⎠

− −

⎪⎪ ⇒⎬
⎪= =
⎪ = −⎜ ⎟

⎝ ⎠⎭

=

���� �

��

��

�

�

��� �
 

and by using ´dx dsx x s
ds dt

= ⋅ = ⋅� � , ´dz dsz z s
ds dt

= ⋅ = ⋅�� , we obtain 

N N
2 2

22

0 0
0

ˆ´

ˆ´́

ˆ1

ˆ2

ˆ´

ˆ´́´1 1 ´´

x

x

s

zs

z

xx s s

x sx se

x sx s e
R R

z se

z s

e
R

sx e
R

r

R
r z s e

≈ ≈
≈

⎧ ⎫⎪ ⎪⎛ ⎞− + +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪

⎛ ⎞+⎜ ⎟
⎝ ⎠
⎧ ⎫
⎪ ⎪⎪ ⎪+⎨ ⎬
⎪ ⎪
⎪ ⎪⎩

= + +

= + ⎛ ⎞+⎜ ⎟
⎝ ⎠

⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩

+

⎭
⎩ ⎭⎭

G�

G �� �� ��
��	�

��



�

�

�

��

�

�
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where we neglect the second derivatives s�� due to very slow changes of the longitu-

dinal component of particles velocity. 

We will further concentrate on linear magnetic fields, generated by upright dipole 

and quadrupole magnets: 

0

1ˆ ˆx zk x e
R

zB ee
p

k ⎧ ⎫− +⎨ ⎬
⎩ ⎭

= +
G

, 

and from simple geometrical considerations, we may link v to s� : 

( )

0

0 0

, v

v 1

and for v we have

1 1 1

s R R x

R x xs s
R R

p m p

p
p p p

ϕ ϕ= = +

+ ⎛ ⎞⇒ = = +⎜ ⎟
⎝ ⎠

= ⋅ ≈

⎛ ⎞Δ
≈ −⎜ ⎟

⎝ ⎠

� ��

� �
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The particles are deflected due to the Lorentz force ( )rm r e B⋅ = ⋅ ×
GGG ��� , thus 

( )
2

2
2

22

´

1

´ ´

´́ 1

1´

´

z

x z

x

x s

x s B
R

e s z B

x sx s

R x B
m

x sz s
R

R R

B

⎛ ⎞ ⎛ ⎞⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ⋅ −
⎜ ⎟ ⎜ ⎟

⎛ ⎞⎜ ⎟ ⎜ ⎟− +

⎛ ⎞− +⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟ ⎝⎝ ⎠⎠

⎠

⎠⎝

⎝

�

�

�

�

��

�

 

Usually, the effect of particle deflection on the longitudinally velocity may be neg-

lected due to small deflection angles. We will concentrate on the transverse planes. 

With the corresponding multipole strengths and the momentum expansion we get 

N

2

0

2
0

0

01 v 1´´ 1 1 1 1

v´´ 1 1 1

1

z

xB

B

x e x x px kx
R R s p R R R p

e x x pz kzp kz
es p R R

p kx

p

e R
=

=

⎛ ⎞Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = + = + − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

⎛ ⎞−⎜ ⎟
⎠⎝ ⎠

⎛ ⎞Δ⎛ ⎞ ⎛ ⎞= − + = − + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

⎝

⎠ ⎝ ⎠

⎠�

�

��	�
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Neglecting all nonlinear terms in 0, ,x z and p pΔ , we obtain the linear equations of 

motion of a particle traversing through a system of magnets, the Hill equations: 

2

1 1´́ ( ) ( ) ( )
( ) ( )

´́ ( ) ( ) ( ) 0

px s k s x s
R s R s p

z s k s z s

⎛ ⎞ Δ
+ − ⋅ =⎜ ⎟

⎝ ⎠

+ ⋅ =

 

 
Note that these equations were derived for upright magnets only! 
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3.2. Matrix Formalism 

We will characterize a particles state by a vector built from its relative coordinates: 

axial displacement
´ axial angular displace

radial di

ment
long

splacement
´ radial

itudinal displacem

angular

ent
relative momentum deviati

displa

on

cement
x

s

z
z

x

X

δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G  

Matrix formalism to describe particles trajectories: 0X X= ⋅M
G G

.  Upright magnets: 

26

51 52

11 1

33 34

2

21 22

5

44

6

43

16
00 00 0 0

00 00 0 0

0 0 0 0 0 0 0 0

0 0 0 00 0 0 0

0 0 0 0

0 0 0 0

´

´ ´ ´

1 ´

10 00 00 0

´

´ ´

´

´

x x x xr r

x x x xr

x

xr

r r r s s ss x s

r r z z z z

z

r

z

r

r

x

z zr

δ

δ

δ

δ δ

= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

M  
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3.2.1. Drift Space 

Due to 1 ( ) ( ) 0R s k s= = , the equations of motion transform to ´́ ( ) ´́ ( ) 0x s z s= = . 

This gives   0(́ ) ´ const.x s x= = , 0(́ ) ´ const.z s z= =  

For the longitudinal coordinate, we have for a drift of length L 

( ) ( ) ( )0 0 0 2 2
0 0

v 1v v v v
v v
L p p Ls l l t L L L

p p
δ

β β γ γ
Δ Δ Δ

= − = − ⋅ = − = = = =
⋅ ∂ ∂

 

Combining these two relations, we obtain the transformation for a drift space: 

2

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0

1
0 1

1
0 1

1
0

0 0 0

1drift

L

L

L

γ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M  
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3.2.2. Dipole Magnets 

Assuming a constant bending radius within the magnet, we have 0k = . Therefore, 

0(́ ) ´ const.z s z= =  Thus in the vertical plane a dipole acts like a drift space if we neg-

lect fringe field effects. 

The homogenous equation of motion for the horizontal plane ( 0p pΔ = ) is solved by 

( ) ( )( ) cos sinh
s sx s a bR R= ⋅ + ⋅  

For a given (and therefore constant) p pδ = Δ , a particular solution of the inhomo-

geneous equation of motion is ( )Dx s R δ= ⋅ . This gives the general solution 

( ) ( )( ) ( ) ( ) cos sinh D
s sx s x s x s a b RR R δ= + = ⋅ + ⋅ + ⋅  

The integration constants a, b are derived from the boundary conditions at 0s =  

0 0( 0) , (́ 0) ´bx s a R x x s x
R

δ= = + ⋅ = = = = , 
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and by defining the bending angle L Rϕ =  of the dipole magnet, we obtain : 

( )0 0

0 0

( ) cos ´ sin 1 cos
( ) ´

x L x R x R
z L z R z

ϕ ϕ ϕ δ
ϕ

= ⋅ + ⋅ ⋅ + − ⋅

= + ⋅ ⋅
 

For the longitudinal coordinate, we have for a drift length L Rϕ= ⋅ : 

( )2
0

v
v D

Ls L L ds dsδ
γ

Δ
≈ − Δ = − −∫ ∫  

The infinitesimal path length element along a trajectory sD in our curvilinear coordi-

nate system is 

( )22 2 2 2
Dds dx dz x R dϕ= + + +  

and with ds R dϕ= ⋅  we obtain for the path length difference LΔ  in linear approxi-

mation: 

( )2
2 2´ ´ 1 1 dsxL x z ds xR R

⎧ ⎫
Δ = + + + − ⋅ ≈ ⋅⎨ ⎬

⎩ ⎭
∫ ∫  
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With the above derived general solution ( )x s , this gives 

0
0cos ´ sin 1 cosx s s sL ds x ds ds

R R R R
δ ⎛ ⎞Δ = ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅⎜ ⎟

⎝ ⎠∫ ∫ ∫  

( ) ( )0 0sin ´ 1 cos sinL x x R R Rϕ ϕ δ ϕ ϕ⇒ Δ = ⋅ + ⋅ ⋅ − + ⋅ −  

Combining all these relations, we obtain for the transformation for a conventional 

sector dipole magnet: 

( )

( ) ( )2

0 0
0 0

0 0 0 0
0 0 0

0 1 cos
0 s

cos s
in

sin 1 cos 1 si

in
1 sin co

n

1

0 0

0

0 0
0 0 1

0 1

0

s

dipole

R
R

R

R

R

R R

ϕ
ϕ

ϕ

ϕ ϕ
ϕ

ϕ ϕ γ ϕ ϕ

ϕ

ϕ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝

−

⎠

⋅

− −

−

− − −

M  

A sector magnet is therefore focusing in the horizontal plane. 
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This effect is purely geometric in nature: 

 
Due to technical constraints, particle accelerators often use rectangular magnets 

which have parallel end faces. Commonly these magnets are installed symmetrically 

about the intended particle trajectory: 
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For a deflection angle ϕ  we have an entrance and exit angle 2ψ ϕ= . The orbit of a 

particle traveling with a radial displacement x0 at the position of the magnet pole of a 

rectangular dipole is shorter than the reference orbit (with x0 = 0) by 

0 tanl x ψΔ = ⋅  

This leads to a decrease of the total deflection angle by 

0 tanl x
R R

ϕ ψΔ
Δ = = ⋅  
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Therefore the position of a particle while leaving a rectangular magnet remains unal-

tered, whereas the radial angular displacement is increased by ϕΔ : 

0

0

1 0
tan ´´ 1

xx
xx

R
ψ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

A particle traveling with a vertical displacement z0 at the position of the magnet pole 

will be vertically deflected due to the horizontal magnetic field xB  in the fringe field 

region of length sΔ  by 

( )
´ tan x

x

s s ez B s
r p e B p

α Δ Δ
Δ = = = = Δ  

and with 0p e R B=  we obtain 

0

1´ xz B ds
R B

Δ = ⋅∫  
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The integral may be easily calculated in a reference system rotated by the exit angle 

2ψ ϕ= : 

 
 

 

0

cos sin sinx u w wB B B Bψ ψ ψ
≈

= + ≈��	�
  

and with cosds dw ψ=  we obtain 

tanx wB ds B dwψ≈ ⋅∫ ∫  

Integration over a closed loop ABCD in the fringe field region leads to 
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0

0 0

0 00

0
B C D A C

z w z w w
A B C D B

z B

B ds B dz B dw B dz B dw z B B dw

= ≈=

= ⋅ = + + + ≈ +∫ ∫ ∫ ∫ ∫ ∫
G G

�	
 ��	�
�	

v  

and we obtain a total vertical deflection angle 

0

0

1´ tan tan
C

w
B

zz B dw
R B R

ψ ψΔ = ⋅ ⋅ ≈ −∫  

Again the position of a particle while leaving a rectangular magnet remains unaltered, 

whereas the vertical angular displacement is changed by ´zΔ : 

0

0

1 0
tan ´´ 1

zz
zz

R
ψ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

The focusing / defocusing effect of the fringe fields (edge focusing) depends on the 

entrance (exit) angle ψ  and may again be described by a linear transformation matrix 
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1 0
0 1

1

1

0
t

0

a

tan 1

n 1
0

0

R

R

ψ ψ

ψ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
M

…

# #

"

 

We finally obtain for a rectangular dipole magnet with 2ψ ϕ=  

rect dipoleψ ψ= ⋅ ⋅M M M M  
 

and with the relations 

sin 2 sin cosϕ ψ ψ= ⋅ ⋅ , 
2 2cos cos sinϕ ψ ψ= −  
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this reads 

( )

( ) ( )

2

2

0 1 cos

0 sin

si

0 0

0 0

0 0 0 0

0 0

n 1 cos 1 sin

0

0 0

1 sin

1

0 0

0

0 1

0 1

2

0

1

0

rect

R
R

f

R R
f f

R R

R R

f

R

ϕ

ϕ

ϕ

ϕ ϕ ϕ γ ϕ ϕ

ϕ

ϕ

ϕ ϕ

−

− − −

=

− −

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M  

where we have defined the focal length in the vertical plane 

1 1 tan
f R

ψ≈  

A rectangular dipole magnet is therefore focusing in the vertical plane. 
It acts like a drift space in the horizontal plane! 
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3.2.3. Quadrupole Magnets 

Assuming a pure quadrupole magnet we set the bending term 1 0R = . The solution 

of the equation of motion depends on the sign of the quadrupole strength k. For 0k <  

we get the solution of a quadrupole magnet, which is horizontal focusing and vertical 

defocusing: 

( ) ( )
( ) ( )

( ) cos sin

( ) cosh sinh

x s a k s b k s

z s c k s d k s

= ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅
 

The integration constants a, b, c, d are derived from the boundary conditions at s = 0: 
0 0

0 0

( 0) , (́ 0) ´
( 0) , (́ 0) ´

x s a x x s b x
z s c z z s d z

= = = = = =

= = = = = =
 

Substitution and building the first derivative, we obtain the transformation of a hori-

zontal focusing (FQ) and a horizontal defocusing (DQ) quadrupole: where we put 

k LΩ = ⋅  with the quadrupole length L. 
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( )

2

1
cos sin

sin c
1

cosh sinh

sinh cos
0

os

1
0

h

1

0

0

FQ

L

k
kk

k
k

γ

Ω Ω

Ω Ω

−

<

Ω Ω

=

Ω Ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M

"

# #

"

 

( )

2

1
cos sin

sin

1
cosh sinh

sinh cosh

c

1
0 1

o
0

s

0

0

DQ

k

k
k

L

k

k

γ

Ω Ω

− Ω Ω

Ω Ω

= >

Ω Ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M

"

# #

"
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3.2.4. Particle Orbits in a System of Magnets 

With the derived matrixes  particle trajectories may be calculated for any given arbi-

trary beam transport line by cutting this beam line into smaller uniform pieces so that 

k=const. and R=const. in each of these pieces: 

 

5 4 4 3 3 2 2 1 1 0E D Q D Q D Q D Q DX X= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅M M M M M M M M M
G G
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but: 
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3.3. Particle Beams and Phase Space 

3.3.1. Beam Emittance 

We consider a beam as a statistical set of points in the phase space. In linear beam 

optics, the horizontal and vertical planes are decoupled and we will therefore concen-

trate on a two-dimensional phase space ( , )́x x . A distribution of points can be trans-

lated and rotated without changing its spread. We choose the origin of the two coor-

dinate axes ˆxe  and ´ˆxe  at the barycentre of the points, such that the averages of their 

coordinates vanish: 

1

1

1 0

1´ ´ 0

N

i
i

N

i
i

x x
N

x x
N

=

=

= =

= =

∑

∑
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The variances 2
Xσ  and 2

´Xσ  are determined in a reference system ( , )́X X  which is 

rotated by a polar angle θ  with respect to ( ´, )x x  in order to minimize (maximize) the 

sum of their squared distances to these axes: 

cos sin
sin cos´

´
´

i

i

i i

i i

x x
x x

X
X

θ θ
θ θ

= ⋅ + ⋅

= − ⋅ + ⋅
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The mean square distances 

2 2

2

2 2

1

2

2 2 2
´

2 2 2
´

2

1

2

´ ´

´

1 cos sin sin 2

1 sin cos si´ n´ 2

N

i

N

X X i

X X
i

i

d X

d

x x x x

x xX

N

x x
N

θ θ θ

θ θ θ

σ

σ

=

=

= = = + +

= = = + −

∑

∑
 

are minimized with respect to the angle θ  (
2 2

´ 0X Xσ σ
θ θ

∂ ∂
= =

∂ ∂
) when 

2 2

´
´

2tan 2 x x
x x

θ =
−

 

giving (from 2 2 2
´

2´X X x xσ σ+ = +   and  2 2
´ 2 ´ sin 2X X x xσ σ θ− = ) 

22

2
´

2

2 2

1 2
2 sin 2

1 2
2 si

´´

´´
n 2

X

X

x xx x

x xx x

σ

σ

θ

θ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠
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We will define the spread of the distribution, which is called the emittance ε, by 

22 2´´ ´X X x x x xε σ σ= = ⋅ −⋅  

It is important to note that this definition usually is used for electron beams, the 
emittance of proton beams is typically defined as 4ε ! 

 
The emittance can be considered as a statistical mean area: 

( ) 22

1 1 1 1

1 1 1 2´
2

´
N N N N

i j i j
i j j i ijx x x x A

N N
ε

= = = =

= − =∑∑ ∑∑  

where Aij is the area of the triangle 0PiPj 

and ε is a measure of the spread of the 

points around their barycentre. 
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The area of the envelope-ellipse is just π times the emittance ε 

´X XA ab σπ πσπ ε= = =  

and its equation with respect to the axes X and X´ is 

2 2 2 2

2 2 2 2
´

´ 1´

X X

X X X X
a bσ σ

+ = + =  

where a and b are the two semi-axes of the envelope-ellipse. 

3.3.2. Twiss Parameters 

The emittance does not give all the information that is contained in the second-order 

moments. We will therefore define an ellipse with parameters involving the second-

order moments of the particle spread in phase space. By an inverse rotation of angle 

θ−  in phase space we obtain 
2 2 2 2 2 2 2 2

´
2

´ ´´ ´ ´ 2 ´ ´2x x x x x xx x x x x x x x x r xσ σ σ σ σε σ= ⋅ − ⋅ + ⋅ = ⋅ − ⋅ + ⋅  
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where we have defined the correlation coefficient 

2 2

´

´

x xr
x x

=
⋅

 

We may define the so called Twiss-parameters α, β, and γ such that 

2

2
´

´

´

´

x

x

x x

x

x

r x x

σ β ε

σ γ ε

σ σ α ε

= =

= =

= = −

 

and the equation of the envelope-ellipse reads in the “conventional” form: 
2 22 ´ ´x x x xγ α β ε+ + =  

 
The meaning of the Twiss-parameters can be read off from the graphical representa-

tion of the envelope-ellipse: 
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• β  represents the r.m.s. beam-envelope per unit emittance, 

• γ  represents the r.m.s. beam divergence per unit emittance, 

• α  is proportional to the correlation between x and x´. 
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3.3.3. Betatron Functions  

In the following, we will first concentrate on the situation where 0p pΔ = . With 
2( ) 1 ( ) ( )K s R s k s= −  the equation of motion reads 

´́ ( ) ( ) ( ) 0x s K s x s+ ⋅ =  

It describes a transverse oscillation with position dependent amplitude and phase, 

which is called betatron oscillation. We try to solve this equation with the set-up 

( )0( ) ( ) cos ( )x s u s sε φ ϕ= ⋅ ⋅ +  

and obtain: 

( ) [ ] ( )2
0 0´́ ´ cos 2 ´ ´ ´́ sin 0u u K u u uφ φ ϕ φ φ φ ϕ⎡ ⎤− ⋅ + ⋅ ⋅ + − ⋅ ⋅ + ⋅ + =⎣ ⎦  

This relation is valid for any given phase ( )sφ  at any given position s, therefore 
2´́ ´ 0

2 ´ ´ ´́ 0
u u K u

u u
φ
φ φ

− ⋅ + ⋅ =
⋅ ⋅ + ⋅ =
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By integration of the second equation we obtain  2
0

( )
( )

s d ss
u s

φ = ∫
�
�

 

and by using this relation  3

1´́ 0u K u
u

− + ⋅ = . 

With the definition of the betatron-function  2( ) : ( )s u sβ =  we derive for the ampli-

tude and phase of the oscillation: 

( )0

0

( ) ( ) cos ( )

( )
( )

s

x s s s

d ss
s

ε β φ ϕ

φ
β

= ⋅ ⋅ +

= ∫
�
�

 

Building the first derivative and defining  (́ )( ) :
2

ss βα = − , we obtain 

( ) ( ){ }0 0(́ ) ( ) cos ( ) sin ( )
( )

x s s s s
s

ε α φ ϕ φ ϕ
β

= − ⋅ + + +  
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The equation for x can be transformed to  

( )
2

2
0cos xφ ϕ

ε β
+ =

⋅
, 

which can be used in combination with the equation for x´ to obtain 

( )
2

2
0sin ´x xβ αφ ϕ

ε ε β

⎛ ⎞
+ = ⋅ + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 

Using 2 2cos sin 1+ =  we derive 
2

2 ( ) ( ) ´
( ) ( )
x s x s x

s s
α β ε

β β

⎛ ⎞
+ ⋅ + ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

which can be transformed by defining 
21 ( )( ) :

( )
ss

s
αγ

β
+

=  to: 

2
2 2 ´ 12 ´ ´ , where and

2
x x x x β αγ α β ε α γ

β
+

+ + = = − =  
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3.3.4. Transformation in Phase Space 

According to Liouville’s theorem, all particles enclosed by an envelope-ellipse will 

stay within that ellipse. The transformation of the horizontal and vertical ellipse pa-

rameters along the beam line may be derived from the transport matrixes in the hori-

zontal and vertical plane. Starting at s=0, we have 
2 2 2 2

0 0 0 0 0 0 02 ´ ´ 2 ´ ´x x x x x x x xγ α β ε γ α β+ + = = + +  

Any particle trajectory starting at s=0 transforms to s≠0 by 

0X X= ⋅M
G G

 

Defining the Beta-matrix B 

2, 1
β α

β γ α
α γ

−⎛ ⎞
= = − =⎜ ⎟−⎝ ⎠

B B  

 

the equation of the envelope-ellipse can be transformed to: 
1 1

0 0 0 1 1 1
T TX X X Xε − −= ⋅ ⋅ = ⋅ ⋅B B
G G G G

 



Accelerator Physics 
 

Terascale Accelerator School 2008                                                                                        W. Hillert 54

where the inverse of the Beta-matrix is 

1 γ α
α β

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
B  

and displacement-vector X
G

 transforms according to 

( )1 0 1 0 0, T T T TX X X X X= ⋅ = ⋅ = ⋅M M M
G G G G G

 

By inserting 1−= ⋅1 M M , we obtain: 

( ) ( ) ( )
( )

1 1 1
0 0 0

1 1 1
0 0 0

1

1 0 1

T T T

T T

T T

X X

X X

X X

ε − − −

− − −

−

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

M M B M M

M M B M M

M B M

G G

G G

G G
 

and we can read off the transformation of the Beta-matrix: 

1 0
T= ⋅ ⋅B M B M  
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This can e.g. be used to derive the beta-function around a symmetry-point of a trans-

fer-line where 0α =  in a simple way: 
2

1

01 1 0
( )

0 10 1 1 1

sym
sym symsym

sym

sym sym

s s
s

s
s s

β
β ββ

β
β β

⎛ ⎞
+⎜ ⎟⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟= ⋅ ⋅ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

B  

This gives the relations for the Twiss-parameters around a symmetry-point: 
2

( )

( )

sym
sym

sym

ss

ss

β β
β

α
β

= +

= −
 

The corresponding beam size scales with 

( )x sσ ε β= ⋅  ! 
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The transformation matrix M can be derived also from the Twiss-parameters. With 

{ }

[ ]{ }
0 0

0 0 0 0

( ) cos cos sin sin

(́ ) cos cos sin sin sin cos cos sin

x s

x s

ε β φ ϕ φ ϕ

ε α φ ϕ φ ϕ φ ϕ φ ϕ
β

= ⋅ ⋅ ⋅ − ⋅

= − ⋅ ⋅ ⋅ − ⋅ − ⋅ + ⋅
 

and the starting conditions 0 0(0) , (́0) ,́ (0) 0x x x x φ= = = , which transform to 

0
0

0

0 0
0 0 0

0

cos

1sin ´

x

xx

ϕ
ε β

αϕ β
ε β

=

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

 

we obtain:  
( )

( )

0 0
0

0 0

0 0 0

cos sin sin

( )
1cos sin cos sin

s

β φ α φ β β φ
β

βα α α αφ φ φ α φ
β β β β β

⎛ ⎞
+⎜ ⎟

⎜ ⎟= ⎜ ⎟− +⎜ ⎟− −⎜ ⎟
⎝ ⎠

M  
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3.3.6. Dispersion Functions 

Including a relative momentum deviation p
p

δΔ
= , we may use the principal solutions 

( ), ( )C s S s  to find a particular solution ( )D s  of the equation of motion where we 

have set 1δ = : 

1´́ ( ) ( ) ( )
( )

D s K s D s
R s

+ ⋅ =  

[ ]
0 ( , )

( ) ( ) ( ) ( )1( )
( )

s

G s s

S s C s CD s d s
R

s S s
s

= −⋅ ⋅ ⋅ ⋅∫
�

� �
�����	����

�
� 
  

Forming the second derivative and using the properties of the Wronskian, we finally 

obtain 

N N
0 0

´́ ( )1 1 1´́ ( ) ( ) ( )
( ) ( ) (

´́ )
)

(
s s

K S K C
D s C s d s S s d s

R s R s
S

s
s C s

R
=− ⋅ =− ⋅

= + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∫ ∫� � � �
� �
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and verify the validity of the setup using the Green’s function ( , )G s s�  defined above. 

We may then generally calculate the dispersion function ( )D s  from the principal so-

lutions by solving 

 

0 0

1 1( ) ( ) ( ) ( ) ( )
( ) ( )

s s

D s S s C s d s C s S s d s
R s R s

= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∫ ∫� � � �
� �

 

 
This relation may also be used in order to derive the parameter 16r x δ=  in the 

transport matrix of dipole magnets. The parameter 26 ´r x δ=  is then calculated by 

forming the derivative (́ )D s . 
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3.3.7. Path Length and Momentum Compaction 

The path length of a particle with horizontal orbit displacement xD is influenced by 

the curved sections of the beam line. The total path length is therefore given by 

0 0

0
( ) ( ) ( )

( ) ( )

s s
D D

s s

R s x s x sL ds L ds
R s R s

⎡ ⎤+
= = +⎢ ⎥

⎣ ⎦
∫ ∫

� � �� �
� �

 

With a given relative momentum deviation p pδ = Δ , we have ( ) ( )Dx s D s δ= ⋅  and 

obtain the deviation 0L L LΔ = −  from the ideal path length 

0

( )
( )

s

s

D sL ds
R s

δΔ = ∫
� �
�

 

This variation is determined by the so called momentum compaction factor αc, de-

fined by 

0

0

0

1 ( )
( )

s

c
s

L L D s ds
p p L R s

α Δ
= = ⋅

Δ ∫
� �
�
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The travel time is given by ( )L cτ β= , and its relative variation is obtained from the 

logarithmic differentiation 

2

1ln c
L

L
α ητ βτ

τ γ
δ δ

β
Δ Δ Δ

Δ = = − = ⋅ =
⎛ ⎞

− −⎜
⎝ ⎠

⋅⎟  

where we have defined the slip factor η by 

2

1
cη α

γ
= −  

The momentum compaction factor therefore characterizes a critical energy  

1
tr

c

γ
α

= , 

which is called the transition energy, where the slip factor vanishes. 
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4. Circular Accelerators 

4.1. Periodic Focusing Systems 

After the discussion of linear beam optics of beam transfer lines which in principle 

can be made of an irregular array of magnets, we will now discuss a repetitive se-

quence of a special magnet arrangement, which is called a periodic lattice. 

4.1.1. Periodic Betatron Functions 

Periodic solutions of a periodic lattice of period-length L will be 

0 0 0

0 0 0

0 0 0

0 0 0

( ) ( )
( ) ( )
( ) ( )
(́ ) (́ ) ´

s L s
s L s

D s L D s D
D s L D s D

β β β
α α α

+ = =
+ = =
+ = =
+ = =

 

Using the transformation of the Beta-matrix and the 2x2 transport matrix M2 (for the 

horizontal or vertical plane), these relations transform to 
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T
0 2 0 2= ⋅ ⋅B M B M  

which yields to   12
0 2 2

11 12 21 22

2
2 2

r
r r r r

β =
− − −

 

     11 22
0 0

122
r r

r
α β−

=  

The dispersion function is obtained from the transformation using the 3x3 transport 

matrix M3 (in case of upright magnets for the horizontal plane only): 

0 0 11 12 13 0

0 3 0 21 22 23 0´ ´ ´
1 1 0 0 1 1

D D r r r D
D D r r r D

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⋅ = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

M  

yielding:    ( )21 13 23 11
0

11 22

1
´

2
r r r r

D
r r

+ −
=

− −
 

     12 0 13
0

11

´
1

r D rD
r
+

=
−
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If the periodic lattice includes a symmetry point, we will have 0 0α =  and 0´ 0D =  for 

this point. We then get the simple solutions 

sym sym12 13
0 02

1111

,
11

r rD
rr

β = =
−−

 

4.1.2. Stability Criterion 

If ( )LM  is the transformation matrix for one periodic cell we will have for N cells:

    ( )( )
N

N L L⋅ = ⎡ ⎤⎣ ⎦M M  

We derive the eigenvalues from   { }2 Tr 1 0λ λ λ− ⋅ = − ⋅ + =M I M  

With the substitution { }Tr 2 cosφ= ⋅M  we obtain  1,2 cos sin ii e φλ φ φ ±= ± =  

We require that the eigenvalues remain finite yielding a real betatron phase φ  . This 

gives the general stability condition:  

{ } 11 22Tr 2r r= + ≤M  
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For a full lattice period, we have 0β β= , 0α α=  and therewith 

0 0

0 0

cos sin sin
sin cos sin

φ α φ β φ
γ φ φ α φ
+⎛ ⎞

= ⎜ ⎟− −⎝ ⎠
M  

Defining the Twiss-matrix 

2 1 0
,

0 1
α β
γ α

−⎛ ⎞ ⎛ ⎞
= = = −⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

J J I  

the transformation matrix for one period can be expressed by 

cos sinφ φ= ⋅ + ⋅M I J  

Similar to Moivre’s formula we get for N equal periods 

( ) ( ) ( )cos sin cos sinNN N Nφ φ φ φ= ⋅ + ⋅ = ⋅ + ⋅M I J I J  

and 

    { } ( )Tr 2 cos 2N Nφ= ⋅ ≤M  



Accelerator Physics 
 

Terascale Accelerator School 2008                                                                                        W. Hillert 65

4.1.3. General FODO Lattice 

 

 
 

The FODO geometry can be expressed symbolically by the sequence 

1 2 1 2

1 1 1 1QF, D, QD, QD, D, QF2 2 2 2
−= =M M

����	���
 ����	���

 

It is sufficient to use the thin lens approximation ( Ql f� ). We will set the focal 

lengths to 2 2 Df f= , 1 2 Ff f= , the drift length to L. Defining  

( )*
1 2 1 21 1 1f f f L f f= + − ⋅  
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the transformation matrix of half a FODO cell is 

1
1 2

2 1
*

2

1
1 0 1 01

1 1 1 10 1 1 1

L L
fL

f f L
f f

⎛ ⎞−⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟= ⋅ ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟− − ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ − −⎜ ⎟
⎝ ⎠

M  

Multiplication with the reverse matrix gives 

{ }
*

2
FODO *

* *
1

1 2 2 1
4and Tr 2 2

2 1 1 2

L LL
f f L

fL L
f f f

⎛ ⎞⎛ ⎞
− ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= = − <⎜ ⎟⎛ ⎞⎜ ⎟− ⋅ − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

M M  

This is equivalent to *0 1L
f

< < , and defining 
1

Lu
f

= , 
2

Lv
f

=  we get 

0 1u v u v< + − ⋅ <  
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from which we derive the boundaries of the stability region 

1 2

1 3

1,
1

1,
1

u
u v

u

u
v v

u

= =
−

= =
+

 

which gives the famous necktie-diagram for thin lens approximation: 
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4.2. Transverse Beam Dynamics 

4.2.1. Betatron Tune 

The betatron tune Q is defined as the number of oscillations per revolution: 

,
,

1
2 ( )x z

x z

d sQ
sπ β

= ⋅ ∫v  

 

If one regards the phase space at an arbi-

trarily chosen point, a single particle 

moves on its phase space ellipse ,where 

the points represents the parameters after 

1,2, … 5 revolutions. 
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4.2.2. Filamentation 

If the envelope ellipse bσ  of the beam is not matched to the ellipse mσ  of the periodic 

lattice, it will start to rotate with a phase advance per revolution of 2π Q  

 
Due to effects of higher order the quadrupole strengths and therefore the phase ad-

vance depends on the amplitude (horizontal and vertical displacements). In case of 

mismatch, the beam phase space distribution starts to filament. After a large number 

of revolutions, the distribution may be surrounded by a large ellipse. 



Accelerator Physics 
 

Terascale Accelerator School 2008                                                                                        W. Hillert 70

4.2.3. Normalized Coordinates 

It is useful to transform the oscillatory solution with varying amplitude and frequency 

( )0( ) ( ) cos ( )x s s sε β φ ϕ= ⋅ +  to a solution which looks exactly like that of a har-

monic oscillator. We introduce Floquet’s coordinates through the transformation: 

( )( )

( )( )
( )

ss
Q

x s
s

φψ

η ψ
β

=

=
 

The angle ψ  advances by 2π  every revolution. It coincides with θ  at each maxβ  and 
minβ  location and does not depart very much from θ  in between. 

Using these normalized coordinates, the equation of motion can be transformed to 
2

2
2 0d Q

d
η η

ψ
+ =  
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The solution transforms to 

( ) ( )0 cos Qη ψ η ψ λ= ⋅ +  

and the phase space ellipse becomes an invariant cycle of radius 0η . 

The use of normalized coordinates is convenient in the discussions of perturbations 

and aberrations: 

4.2.4. Closed orbit distortions 

Let us assume a dipole field error produced by a short dipole which makes a constant 

angular kick in divergence   ( )´
Bl

x
B R

δ
δ =  

which perturbs the orbit trajectory which elsewhere obeys 
2

2
2 0d Q

d
η η

ψ
+ = ,   with   ( )0 cos Qη η ψ λ= +  
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We choose 0ψ =  to be diametrically opposite to the kick. Then by symmetry 0λ =  

and the disturbed orbit oscillates around the ideal path 

 

Differentiation gives   ( ) ( )0 0sin sind Q Q Q Q
d

η η ψ η π
ψ

= − ⋅ = − ⋅    at   ψ π= . 

With  
0

1d
ds Q
ψ

β
=   and  0

dx d
ds ds

ηβ= ⋅ , we may relate the orbit displacement 0η  to  
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the real kick by  ( )0
0

0

´ sin
2
x dx d d Q

ds d ds
δ η ψ ηβ π

ψ β
= − = − ⋅ ⋅ = ⋅  

giving    
( )

0
0 ´

2sin
x

Q
β

η δ
π

=  

Returning to physical coordinates, we obtain the closed orbit displacement ( )cx s  at 

position s for a field error at s0 with x β η= ⋅  and 0( ) ( )s s Q Qφ φ π ψ− + = ⋅ : 

( ) ( )
( ) ( )0 0

0

amplitude at position

( ) cos cos (
( ) ( )

s n
) (

2 i
)c

s

x s
s s Bl

Q B R
Q s s Q

β
β η ψ φ φ π

β δ
π

=

⎡ ⎤
⎢ ⎥
⎢

= = ⋅ − +
⎥⎣ ⎦����	���


 

The effect of a random distribution of dipole errors can be estimated from the r.m.s. 

average, weighted according to the 0β  values of the kicks ixδ : 

( ) ( )0 00
( ) ( )( ) cos (

2sin
) ( )c

s

Blx s s s Q ds
B R

s
Q

s δβ
β φ φ π

π
= ⋅ ⋅ ⋅ − + ⋅∫v  
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Using matrix algebra, the displacement of the closed orbit at the position of the field 

error can be calculated from the displacement vector just before and just after the 

kick element: 0 0 0 0 0

0 0 0 0 0

cos sin sin
´ ´ ´ sin cos sin ´
x x x

x x x x
φ α φ β φ

δ γ φ φ α φ
+⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅ = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
M  

with 2 Qφ π= , giving  
( ) ( )

( ) ( ) ( )

0
0

0 0

´ cos
2sin

´´ sin cos
2sin

xx Q
Q

xx Q Q
Q

β δ π
π

δ π α π
π

=

= −⎡ ⎤⎣ ⎦

 

The closed orbit displacement ( )cx s  is calculated from ( )0 0( ) ,cx s s s x= ⋅MG G  

( )

( )

0 0
0 0

00 0
0

00 0

( )
cos sin ( ) sin

( )
(́ ) ´1 ( ) 1 ( ) ( )

sin cos cos sin
( ) ( )

c

c

s
s

x s x
x s xs s s

s s

β
φ α φ β β φ

β

α α α α β
φ φ φ α φ

ββ β β β

+

= ⋅
+ −

− + −

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠
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4.2.5. Gradient Errors 

Consider a small gradient error which affects a quadrupole at position s in the lattice 

of a circular accelerator. Translated to matrix algebra, we have to multiply a perturba-

tion matrix 

1 0
( )

( ) 1
s

k s dsδ
⎛ ⎞

= ⎜ ⎟− ⋅⎝ ⎠
δQ  

with the unperturbed matrix for one circle staring at s (where α(s)=α0, …) 

0 0 0 0 0
0

0 0 0 0 0

cos sin sin
sin cos sin

φ α φ β φ
γ φ φ α φ

+⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

M  

giving: 

( )

0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

( ) ( )

cos sin sin
cos sin sin sin cos sin

s s

k ds k ds
φ α φ β φ

δ φ α φ γ φ δ β φ φ α φ

= ⋅

+
=

− + − − + −
⎛ ⎞
⎜ ⎟
⎝ ⎠

M δQ M�
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From { }1 2 Tr cosφ⋅ =M�  we can calculate the change in cosφ : 

( ) 0 0 0
1cos sin sin
2

12 ( ) ( )
2

k ds

Q s k s ds

φ φ φ φ β δ

π φ β δ

Δ = − Δ ⋅ = −

Δ = Δ =
 

Integrating over the length of the quadrupol perturbation, one obtains 

1 ( ) ( )
4

Q s k s dsβ δ
π

Δ = ∫  

A gradient error will not influence the closed orbit but the betatron function of the 

lattice. In order to calculate the betatron amplitude modulation, we have to determine 

the single turn transport matrix starting at a given observer position s, introducing a 

small gradient perturbation at position s0: 

11 12 11 12
0 0 0

021 22 21 22

1 0
( , ) ( ) ( , )

1s

b b a a
s s s s s

k dsb b a aδ
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⋅ ⋅ = ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
M M δQ M�  
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It is only necessary to evaluate the element 12r�  which is 

( )12 11 12 12 12 22 12 0 12 12r b a b k ds a a r k ds a bδ δ= + − ⋅ + = − ⋅�  

where 12r  from the unperturbed matrix found by putting 0 0k dsδ = . Thus the varia-

tion in the 12r  term due to the perturbation is 

( ) ( ) ( )
( ) ( )

0 0 0 0 0

0 0 0 0 0

( )sin 2 ( ) ( ) sin ( ) ( ) sin ( ) ( )

( ) ( ) sin ( ) ( ) sin 2 ( ) ( )

s Q k ds s s s s s s

k ds s s s s Q s s

β π δ β β φ φ φ φ

δ β β φ φ π φ φ

⎡ ⎤Δ = − ⋅ − ⋅ −⎣ ⎦
⎡ ⎤= − ⋅ − ⋅ − −⎣ ⎦

 

Using ( ) ( )1sin sin cos cos
2

α β α β α β⋅ = − − +⎡ ⎤⎣ ⎦  the left-hand and right-hand sides 

can be expanded to give 

( ) N ( )

( ) ( ){ }0 0 0

0

0

0

0

2

1 ( )

( )si ( ) cos 2

( )

n

2
cos

2

cos 2 (2 ) ( )

Q

k ds s

s Q

s sQ

s Q

s Q

β π

β π

π

δ

π

πβ

β

φ φ

↑

↓

Δ + =

⎡ ⎤− − −⎣ ⎦

⋅ Δ ⋅


������  
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This leaves the final expression for the betatron amplitude modulation (the so called 

beta-beating): 

( ) ( )00 0 0 0
0

( ) ( )( ) ( ) cos 2 (
2

) ( )
sin 2 s

s ss k s s s Q ds
Q

β δ φ φ
π

β πβ ⎡ ⎤Δ = ⋅ − − ⋅⎣ ⎦∫v  

4.2.6. Optical Resonances 

Dipole errors will give a large closed orbit displacement when the tune is close to an 

integer number which will be unstable in case of an integer Q. 

Gradient errors will produce an average tune shift QΔ  and an amplitude modulation 

of the beta function which will explode for half integer Q values. 

These phenomena are called resonances. Due to the turn by turn modulation of the 

tune, there exist regions of instability called stop bands around the resonance condi-

tions. The width of these stop bands are given by the tune modulation amplitude: 
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Dipole Errors: 

 
No average tune shift 0QΔ =  

Tune modulation amplitude dQ  

Gradient Errors: 

 
Average tune shift ( )1

4
Q klβ δ

π
Δ =  

Tune modulation amplitude dQ Q= Δ  
 
Any particle whose unperturbed Q lies in the stop band width dQ will lock into re-

sonance and is lost. 
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We may generalize and give a list of resonances and their driving multipoles: 

resonance type driving multipole 
integer resonance: Q n=  dipole errors 

half-integer resonance 2 Q n⋅ =  quadrupole errors 
third-integer resonance 3 Q n⋅ =  sextupole errors 

... 

Due to betatron coupling, perturba-

tions may depend on the betatron am-

plitude in both planes. These coupling 

terms lead to the generalized reson-

ance condition 

x zj Q k Q N⋅ + ⋅ =  

where j+k indicates the order of the 

resonance.  
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4.2.7. Chromaticity 

The variation of tunes is called chromaticity and is defined by the factor ξ  in 

,
0

,x zx z
pQ

p
ξ Δ

Δ = ⋅  

We distinguish between natural chromaticity created by the chromatic aberration of 

quadrupole magnets and perturbations derived from non linear perturbations in the 

particles trajectories (e.g. produced by sextupole magnets). 

Natural Chromaticity: 

The quadrupole strength scales with the particles momentum: 

0

pk k p
ΔΔ = − ⋅  

and the tune shift can therefore be calcu-

lated from: ,
0

,,

,

1 ( ) ( )
4 x z x zx z

x z

pQ
p

s k s ds

ξ

β
π

=

= − ⋅ ⋅
Δ

Δ ⋅∫ � � �
�����	����
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Chromaticity produced by sextupoles: 

A beam of particles moving on a dispersion orbit through a sextupole magnet is “fo-

cused” by the nonlinear field due to horizontal displacement 
0

px D p
Δ= ⋅ . We can 

derived a position dependent focusing strength from 

( )2 21ˆ ˆ2sext x z
e B m x z e m x z ep = + −

G
 

giving a dispersion dependent kx and kz to: 

0

0

z
x

x
z

e Bk
p x
e Bk

p

p

x D
p
px

p

m

D

m

m
z

m

∂
= ⋅ = ⋅

Δ
= ⋅

∂

∂
= ⋅ = ⋅ = ⋅

⋅

Δ
⋅

∂

 

This adds to the natural chromaticity and gives in total: 

, , ,
1 ( ) ( ) ( ) ( )

4x z x z x zk s m s D s s dsξ β
π

⎡ ⎤= − − ⋅⎣ ⎦∫ � � � � �  
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In order to avoid a large tune spread, chromaticity has to be corrected by the use of 

additional sextupole magnets right after focusing and defocusing quadrupoles where 

the horizontal dispersion does not vanish: 

 
This correction will have an influence on the stability of the beam and th maximum 

aperture given by nonlinear effects (so called dynamic aperture): 
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The dynamic aperture can be calculated from a tracking of the particles orbit through 

the accelerator where the nonlinear effect of sextupole magnets has to be treated as 

step by step correction in linear beam matrix optics: 
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The orbit vector is transformed from s0 to s1 by matrix transformation 

1 1 0X X= ⋅M
G G

 

A sextupole of length l will produce an angular kick in the horizontal and vertical or-

bit of     ( )2 2
1 1 1

1 1 1

1´
2

´

x ml x z

z ml x z

Δ = ⋅ −

Δ = ⋅
 

which gives an orbit vector right after the sextupole of 

1

1 1
2

1

1 1

´ ´

´ ´

x
x x

X
z

z z

⎛ ⎞
⎜ ⎟+Δ⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟+Δ⎝ ⎠

G
 

By this method a randomly chosen distribution of start vectors 0X
G

 is tracked through 

the accelerator for many revolutions and the resulting dynamic aperture is derived 

from the phase space representation. 
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4.3. Longitudinal Beam Dynamics 

4.3.1. Equation of Motion in Phase Space 

From the discussion of the momentum compaction (chapter 4.3.7.) we have obtained 

for the relative variation of the travel time 0T TΔ  and the angular revolution frequen-

cy 0ω ωΔ : 

0 0
2

0 0

1
c

T p p
T p p

α η
γ

ω
ω

⎛Δ Δ Δ Δ
= − = − = − ⋅

⎞
−⎜ ⎟

⎝ ⎠
 

The revolution frequency 0ω  is linked to the RF frequency RFω  by the number h of 

circulating bunches, which is called the harmonic number. Using this relation we 

obtain for the phase shift 0ϕ ϕ ϕΔ = −  with respect to a reference particle (with refer-

ence phase 0ϕ ): 

0RF T h Tϕ ω ωΔ = ⋅ Δ = ⋅ ⋅ Δ  
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The phase shift per revolution can be linked to the relative momentum deviation by 

using the η-parameter: 

( ) 0 0
0 0

2
rev

p ph T h
p p

ϕ η ω π ηΔ Δ
Δ = − = −  

and may be expressed in terms of the relative energy deviation using 

2 2 4 2 2 2 2
0 2 2 dE dpE m c p c E dE pc dp dE c dp

E p
β β= + ⇒ ⋅ = ⋅ ⇒ = ⋅ ⇒ =  

which gives: 

( ) 2
0

2
rev

h E
E

π ηϕ
β

Δ
Δ = −  

So far, we have expressed the phase shift ( )rev
ϕΔ  per revolution in terms of  

0E E EΔ = − . In order to relate this to the energy gain per turn produced by accelera-

tion, we first have to divide by the revolution time T0 to get the change of the phase 

shift per unit time ϕΔ � : 
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( )
2

0 0 0

2revd h E
dt T T E

ϕ π ηϕ
β

Δ
Δ = = − ⋅ Δ  

We then have to built the second derivative to express this variation in terms of the 

energy gain ( )rev
EΔ per turn 

( ) 0( ) ( ) sin ( )
rev

E eU W E eU W Eϕ ϕΔ = − = −  

where ( )W E  represents the radiation losses per turn due to synchrotron radiation and 

( )U ϕ  is the acceleration voltage for a given phase ϕ . The energy gain per turn 

( )rev
EΔ  is linked to the energy deviation EΔ  with respect to the reference particle by 

( )
0

1
rev

d E E
dt T

Δ = ⋅ Δ  

This gives 
2

2 2
0 0

2 0d h d E
dt T E dt

ϕ π η
β

Δ Δ
+ ⋅ =  
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and we finally obtain 

( )
2

0 02 2 2
0 0

2 sin ( ) 0d h eU W E
dt T E

ϕ π η ϕ ϕ
β

Δ
⎡ ⎤+ ⋅ + Δ − =⎣ ⎦  

 

4.3.2. Small Oscillation Amplitudes 

For small deviations ϕΔ  from the synchronous phase we can expand the acceleration 

voltage into a Taylor series and get 

( ) ( )00

0
0

0
0

1 ( )( )
dW Ed E dUE e E

dt T T d dE
eU W Eϕ ϕ

ϕ
ϕ

⎧ ⎫Δ
Δ = ≈ + ⋅ Δ − ⋅ Δ⎨

⎩
− ⎬

⎭
 

At equilibrium we have 0 0( ) ( )eU W Eϕ =  and obtain the phase equation 

0 0
0

2 2

2

2
00 0

2

1 ( )
2

os 0c2 2

SS

dW E
T

h e U
T E

d d
dEdt td

α

π ηϕ ϕϕϕ
β

= =Ω

Δ Δ
+ ⋅ ⋅ +

⎛ ⎞
⋅⎜ ⎟

⎝

⎛ ⎞
⋅⎜

⎝
⋅ =⎟

⎠⎠
Δ

����	����	� �� � 
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Particles orbiting in a circular accelerator therefore perform longitudinal oscillations 

with the angular frequency SΩ , which are called synchrotron oscillations. These 

phase oscillations are damped or antidamped depending on the sign of the damping 

decrement Sα . For small oscillation amplitudes the movement can be described by a 

damped harmonic oscillator. In most cases we find the damping time much longer 

than the phase oscillation period 

1 2 1
S

S S SQ
πτ

α
= =

Ω
�  

and the synchrotron tune SQ , defined by the number of longitudinal oscillations per 

turn, much smaller than the transverse tunes XQ , ZQ . 

The oscillations are stable for a real angular frequency SΩ  and therefore for a posi-

tive product 0cosη ϕ⋅ . From 2 21 1 trη γ γ= −  and the equilibrium condition 

0 0 0sin ( ) 0eU W Eϕ = >  we derive the condition for stable phase focusing: 
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0

0

0 for
2

for
2

tr

tr

πϕ γ γ

π ϕ π γ γ

< < <

< < >
 

Neglecting the small damping term the equation of motion reads 
2

2
2 0S

d
dt

ϕ ϕΔ
+ Ω ⋅ Δ =  

and is solved by a harmonic oscillation 

m ( )cos Stϕ ϕ φΔ = Δ ⋅ Ω +  

Building the first derivative and relating ϕΔ �  to the relative energy deviation 0E EΔ , 

we obtain for the amplitude mϕΔ  of the oscillation 

m ( ) 2
0 0 0

2sinS S RF
h E pt
T E p

π ηϕ ϕ φ ηω
β

Δ Δ
Δ = − Ω ⋅ Δ ⋅ Ω + = − ⋅ = ⋅�  
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m
2

0 0max max

RF RF

S S

E p
E p

ηω ηωϕ
β

⎛ ⎞ ⎛ ⎞Δ Δ
⇒ Δ = ⋅ = ⋅⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

 

 
All particles of a beam perform incoherent phase oscillations about a common 

reference point and generate thereby the appearance of a steady longitudinal 

distribution of particles which we call a particle bunch. 

The total bunch length lb can be determined from the maximum longitudinal excur-

sion of particles from the bunch center and is twice the amplitude of the phase varia-

tion.: 

m m
02 2

b RFl c
h

λ ϕ ϕ
π ω

= ⋅ Δ = ⋅ Δ  

Using the equation derived above, this gives 

0

0 0 0 0

22
cosb

c E El
heU E

π η
β ω ϕ

⎛ ⎞Δ
= ⋅ ⋅ ⋅ ⎜ ⎟

⎝ ⎠
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4.3.3. Large Amplitude Oscillations 

We will ignore the small damping term for the following discussions. This allows us 

to rewrite the equation of motion (without any further approximation) to 

[ ]
2

0
0

sin sin 0
cos

Sϕ ϕ ϕ
ϕ

Ω
+ − =��  

with the synchrotron frequency SΩ  defined above and 0ϕ ϕ ϕ= + Δ . 

This can easily be integrated to the potential equation 

N
[ ]

2

0

2

0

potential enerkinet gyic energy

cos consi st
s

.
2

n
co

S ϕ
ϕ

ϕ ϕ ϕ
⎧ ⎫Ω

− +⎨+ =⎬
⎩ ⎭������	�����

�



 

The potential energy function corresponds to the sum of a linear function and a sinu-

soidal one. An oscillation can only take place if the particle is trapped in the potential 

well: 
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max
1 0ϕ π ϕ= −  is an extreme elongation corresponding to a stable motion. The corres-

ponding curve in phase space is called separatrix and the area delimited by this curve 

is called the RF bucket. Part of this area is filled with particles, forming the bunch. 
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The equation of the separatrix is 

[ ] ( ) ( )
2 2 2

0 0 0 0
0 0

cos sin cos sin
2 cos cos

S Sϕ ϕ ϕ ϕ π ϕ π ϕ ϕ
ϕ ϕ

Ω Ω
⎡ ⎤− + ⋅ = − − + − ⋅⎣ ⎦

�
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The other extreme elongation max
2ϕ  (second value for which 0ϕ =� ), is such that 

( ) ( )max max
2 2 0 0 0 0cos sin cos sinϕ ϕ ϕ π ϕ π ϕ ϕ+ ⋅ = − + − ⋅  
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From the equation of motion it is also seen that ϕ�  reaches a maximum when 0ϕ =��  

corresponding to 0ϕ ϕ= . This gives the maximum stable values of ϕ�  and the maxi-

mum energy spread maxEΔ , which is called the RF acceptance: 

( )2 2
max 0 02 2 2 tanSϕ π ϕ ϕ⎡ ⎤= Ω − − ⋅⎣ ⎦�  

( )0
0 0 0

0 0max

2cos 2 sinE eU
E h E

β ϕ π ϕ ϕ
π η

⎛ ⎞Δ
⎡ ⎤= ± ⋅ − − ⋅⎜ ⎟ ⎣ ⎦

⎝ ⎠
 

 
In accelerator physics one usually defines an over voltage factor q by 

0

0 0 0

maximum RF voltage 1
desired energy gain sin sin

eUq
eU ϕ ϕ

= = =  

Using this factor, we can rewrite the RF acceptance to 
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20 0 0

0 0 0max

2 sin 1 21 arccosE eU eUq
E h E q h E

ϕβ β
π η π η

⎛ ⎞ ⎛ ⎞Δ
= ⋅ − − ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Using ( )2
Cη γ α−= − , 21C xQα ≈  and 0RF hω ω= ⋅ we finally note the important scal-

ing: 

0 0

0 0 0 0max max max

1 si,1 n,S
RF

E E E eUQ
E E E E

γ ϕ
ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ Δ
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�
∼ ∼ ∼

 


