. & | i Blue (l)ﬂ
:ﬁ?‘ Brain
% 1 ECOLE POLYTECHNIQUE
- ProJeCt FEDERALE DE LAUSANN

Accelerating the Pipeline of
Brain Tissue Simulations
with Apache Spark

o
Fernando Pereira, Judit Planas, Matthias Wolf j
. Wiy Blue Brain Project, EPFL L&A
‘ “ 4 |)i
: A 9 ,.

A i
A /A
FS LR e)) N A

Outline

e Introduction
e Motivation

e Circuit building process
o Functionalizer filtering
Partitioning
Reproducibility
Running at scale

o O O

e Simulation output analysis
o Workflow & data structure
o Evaluation

e Conclusions

Chan A

7" Project

10N

Introduct

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Blue
g rain

The Blue Brain Project

e The Blue Brain Project (BBP) is a Swiss initiative that targets the reconstruction and
simulation of the brain, hosted in Geneva

e BBP is a multidisciplinary team that brings together people from a wide variety of

backgrounds, like neuroscience, computer engineering, physics, maths or chemists
(~120 people and growing!)

Y AW

i7" Project

e Help scientists understand how the brain functions internally

e BBP has been able to reproduce the electrical behavior of a neocortex

fragment by means of a computer [1]
o Revealed novel insights into the functioning of the neocortex

e Supercomputer-based simulations of the brain:
o Enables experiments that are impossible in a laboratory

e Understanding the brain can contribute in different fields: understanding of brain
diseases, neurobotics, neuromorphic computing, Al, ...

[1] Markram et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell, Vol. 163, Issue 2, pp 456 - 492

Chan A

1" Project

e, IOHE

Project ECOLE POLYTECHNIQUE
. FEDERALE DE LAUSANNE

In vivo | in vitro

experime”ts/

Model validation

Simulation
(in sillico experiments)

Data analysis

o

% Project isgisoutcnu Scripting analysis

Larger Circuits, Larger Data

e Brain tissue simulations need & produce massive amounts of data very quickly
o We cannot simulate the whole human brain with existing supercomputers
o BBP focuses on the simulation of rodent brain regions

e Scientists use sequential scripts to build & analyze simulations
o Python is preferred
o They do not have time / expertise to improve their scripts
o We are reaching the computational limit of our existing tools — need for scalable solutions

e Example: Plastic neocortex simulation
o 31.000 neurons, 30 s biological time
o Output: ~50 GB per recorded variable [x N]

O-00—-00-00=

)
or
00
'o
or
Q0
ro
O
o
ro
or

0o0-00700—-00

o—-00-°0-00=

00000000000
00000000000

Jan HEAE

Pro ect ECOLE POLYTECHNIQUE
.j FEDERALE DE LAUSANNE

AL A

L

7 3 b
— N o
7 : 4 { :; , NG g 2 It r i [:' ' ‘ -
X " 4 :\ ' q i P]
S B = TN
N N\ & p— xr:;\ e 5
- ~ 7 d
—&< ek 13«: \) f . r
- - ~ > N - -
v - < \ & 2] > N ¥f ’ -
/ ~ O i , /< i ‘ > »;‘
= ":,A : ’ -
‘- -] []
7 . Circuit Building Process
: , 0\ . >
t’ ' pe 3 Ve J -~ .)
s “ \‘, 4 . \) b & s &
7 J
he N 4 N -
b i~ , g 23

W7 proj

Circuit Building Process

Touch Detector

e Which sections of axons/dendrites overlap?

£ Blue

Brain
4 Dral —
i7" Project [ioi

10

Circuit Building Process

Touch Detector

e Which sections of axons/dendrites overlap?

Functionalizer

e Which touches are biologically valid?
o Filter out those which don’t fit

e What are the likely parameters?

o Conductance, depression & facilitation time...

o Sample from given distributions

Chan A

" Project !

11 M cells ~> 500 B touches

11

Functionalizer Filters

Soma-axon distance
Reduce Cut
Touch rules

¢ Blue
éi Brain
" Project

Deterministic filters

SQL filter expression applied
to every touch

Limitation: Performance
degrades as the number of

rules increase

Improvement: Precalculate

and broadcast a filtering table.

Then merge by index lookup

I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Probabil

istic filters

Same principle as Rejection Sampling

l

!

reject reg

Xi~qr(x)

12

Functionalizer Filters

Soma-axon distance
Reduce Cut
Touch rules

¢ Blue
?‘{:i‘ Brain
W' Project

Deterministic filters

SQL filter expression applied
to every touch

Limitation: Performance
degrades as the number of

rules increase

Improvement: Precalculate

and broadcast a filtering table.

Then merge by index lookup

I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

1. Compute histogram

2. Filter accordingly

Compute histogram
Validity checks

Filter accordingly
Re-compute histogram

Validity checks

o gk~ wbh =

Filter accordingly

Y

Huge, impracticable, execution plans
Lots of shuffles

Sub-optimal partition sizes

13

Really, Lots of Shuffles!

Details for Job 3

Can A
3 Project ECOLE POLYTECHNI

QUE
FEDERALE DE LAUSANNE

14

Breaking Execution Plans

-> Hard time analyzing complex execution plans?

-> Expensive calculations may end up being computed twice?

Consider checkpointing intermediate results to DISK
e Shuffles are written to disk anyway!
e Break the plan in strategic points

o Invaluable for analysis (& execution!)

o Reuse them whenever possible

e Stack computations to hide 1/O time

o Avoid shuffles — Keep partitioning!

o
% Brain £COLI E
FEDE E

" Project

Details for Job 34

Status: SUCCEEDED
Completed Stages: 2

» Event Timeline
~ DAG Visualization

WholeStageCodegen checkpoint

15

Breaking Execution Plans

Spér o Jobs Stages

e BroadcastJoin [if one DF is small enough]

Details for Job 34

O "spark.sql.autoBroadcastJoinThreshold" (def: 10MB) Py
o Manually activate with .broadcast() "o

e SortMergedoin
o Requires the same exact partitioning:
m Columns & Number of partitions
o Otherwise does it for you — shuffle

Storing to disk with Partitioning:

e Use saveAsTable() or localCheckpoint() (sorry parquet!)

df.write.mode("overwrite"). jwrite
.bucketBy(num_partitions, coll, to seq(sc, other_cols))
.sortBy(coll, _to_seq(sc, other_cols))
.saveAsTable(table_name))

Y AW

£ H ECOLE POLYTECHNIQUE
W ProJeCt FEDERALE DE LAUSANNE

nvironment

16

Partition Size Control

Avoid OOM
e Some operations (UDFs, sort) take N times the partition size in memory

e Executors heap mem < 64 GB, high thread (task) number

o N_CPU x Partition_Size x Margin x 2 < 64 GB

O Va)

Executor

Executor

e Our configuration

o Cap partitions to 256 MB Task (1 / core) Task (1/ core)
Partition Partition
o 2x 18-core executors per worker node Runtime mem Runtime mem

Spark features:

. . . . * ,?f) —
e repartition(numPartitions, *cols) 7% g R e .
o
Bl =
Coan IO ~
W Project g rouTiciiau:

Partition Size Control

Spark features:

e repartition(numPartitions, *cols) & — shuffle, will change partitioning scheme — shuffle
o coalesce()
o df.rdd.getNumPartitions()

e Configuration entries:

o Reading: "spark.sql.files.maxPartitionBytes" Executor

o Writing: hadoopConfiguration().setInt("parquet.block.size",)
Task (1 / core)

o Shuffles: "spark.sql.shuffle.partitions" Partition

Runtime mem

Cache & buffers

Jan HEAE

" Project &5

et M

ty & Scalability

Reproduc

19

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Blue
.Brain
Project

Scientific Requirement: Reproducibility

We need random numbers to

e Sample touches to match statistical distributions
o Using a “survival” probability depending on touch categorization

e Generate synapse properties from parameterized distributions
o Following Poisson, Gamma, and Normal distributions

e Scientist want to have results reproducible on a binary level
o Precludes relying on statistical equivalence
o Need to use specific seeds in calculations

Y AW

 Project i

20

Scientific Requirement: Reproducibility

Seeding in the Spark documentation:

e pyspark.sqgl.DataFrame.sampleBy(col, fractions, seed=None)
e pyspark.sqgl.functions.rand(seed=None)

Discovered drawbacks:

e The current implementation in Spark itself uses the seed to re-seed per partition
e Introduces a dependency on number of partitions
e Variance in number of cores used influences partitions

No guaranteed reproducibility!

Y AW

" Project

Adding RNG via Java / PandasUDFs + Cython

Possible approach:

e Java UDF class, applied per row SpQ

e But Java RNG stack is very barebones, JNI integration difficult ———

e Use Random123-based library (Threefry)
e Counter-based with keys, derivation creates new unique keys

Other software (libraries) in our stack: P

Cython

©

How do we connect this with Spark?

e [Easy to integrate with Cython into Python
e Call into Cython from columnar PandasUDF

Y AW

" Project

Scientific Roadmap: Circuit Sizes

2017 2018 2019 2020

A\ rain
B “OLE CHNIQUE
AUSANNE

W Project 5

2021

2022

23

Interfacing with an HPC Cluster

Our environment;

e Spack / Nix for deployment and distribution (C libraries, Python packages)

e No permanent or dedicated Spark cluster
o Use a shared HPC supercomputer (BlueBrain5)
o Shared parallel file system: GPFS
o 80 nodes with local disks: 2 TB NVME SSD per node
o Launch software via SLURM

Custom script for spawning a temporary Spark cluster

e Sets up local directory structure and launch Spark master, workers
e Launches PySpark application and tears down cluster when done

Chan A

ECOLE

) ProJeCt FEDERA

24

Spark Performance

64 nodes SLURM: 23104 64 nodes
36 cores / node 10']'ox 10 date: 2018-05-02 18 cores / node 10 - 1OX10
2304 cores total Spark 2.2.1 runtime: 14:15:44

. 1152 cores total Spark 2.2.1
. After debugging:

filter_by_rules run_reduce_and_cut export_results

URM: 27368
date: 2018-05-10
runtime: 2:13:32

filter_by_rules

run_reduce_and_cut export_results
! >_and_ |

apply_reduce apply_reduce
— —

e File system
interactions very
slow ’

b

. 0
e Non-linear
175 __ filter_by_rules run_reduce_and_cut export_results . . . 120 filter_by_rules run_reduce_and_cut expo(rt__re; ults
5 0 s increase in file - e e
E‘ 125 E,
5 100 count g%
=l 2 6
E 7 £
a]
. e GPFS Poop=
2 20 J
0 performance .
50

140

filter_by_rules run_reduce_and_cut export_results WO e n S filter_by_rules run_reduce_and_cut export_results
0 by 0 ! —and_ ! rS 120 _by_ ! :_and_ 3
40

apply_reduce apply_reduce
— —>

100

40
10
20
¥ 0 0
s — N w—

{jh 1 ECOLE POLYTECHNIQUE
dhe ProJeCt FEDERALE DE LAUSANNE

o

Disk usage / %
8

Disk usage / %

Why HDFS: Strong Scaling @ 1.7 M Neurons

e HDFS increases turnaround speed Strong Scaling: S1.v6a

—&— mode: default, version: Spark 2.2.1
—8— mode: default, version: Spark 2.3.0
2:16:32 —&— mode: hdfs, version: Spark 2.2.1

1:08:16

Runtime

34:08

17:04

256 512 1024
Number of Cores

7 Ban P

Pro;ect FEDERALE

26

Why HDFS: Weak Scaling

e C++ implementation: OOM
e GPFS limits runtime

e HDFS limits scale

Y AW

1 ECOLE POLYTECHNIQUE
dhe Pro.jeCt FEDERALE DE LAUSANNE

Hours

104

103

102

10t

- C
—8— spark

—8— spark+hdfs

O1l.v6a
4.6

Core-Hours

Sl.v6a 10x10
57.7 124.4

Touches (in billions)

dev-11M
439.2

27

Lessons Learned

1+ Blue
%{“ Brain
" Project

Successful transition from C++ implementation to Spark
Execution plans grow unreasonably and need to be broken up
Partitions sizes should be tuned for optimal execution

Built-in RNG support is lackluster

Parallel file systems become unusable very fast

T

ECOLE

FEDERA

28

£ Blue
. Brain
" Project

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

lysis

29

Data Analysis Workflow with Spark

Pros Cons
e Python support e NumPy support is critical:
e Scalable (cluster) o RDD: OK
e Can be hidden from the final user o DataFrame: needs data conversion
e Fits our type of analysis e Missing native reader for custom formats
e Compatible with on-site system UDFs in Python add overhead

On-site GPFS can’t be migrated to HDFS

Lm— N Binary

“\\
10110 File /

l.h‘
10110
01001

°
)
!
Reader .
T T—
-

(|

1" Project

e

Current Output Layout vs [Spark] Key/Value Layout

Nrn TS Src Data

Nrnl Nrn2 Nrn3 I O e
TS0 ‘ | ‘ D ST 2

TS1 = -
N

152 —

S | | =

Key/value layout breaks major ordering
o Key: Nrn + TS pair

e Matrix-like organization

e Written by rows (time steps) — good

performance e Open design to
o Add/remove columns at convenience
e Multiple read patterns: by rows or columns o Hold arbitrary data
or randomly... — cannot optimize for each

Faster (non-sequential) access time
use case

Jan HEAE

i Project 51

Spark Data Analysis Evaluation

e In order to evaluate the Spark data analysis framework, we carefully choose two real
use cases, with opposite data access patterns:

Computation by GID (neuron ID) Computation by TS (time step)
e Mean values per neuron over time e Histogram of neuron values per time step
e Column-major access e Row-major access

oooooo

A

/4
I
I

oooooo

200000

100000

o

Chan A

7" Project

Configuration Comparison

RDD
Parallel structure <
DF

Automatic
Data partitioning <
Manual
NP array
Data container < Binary: byte array
Python list

Binary (BBP)
Data source <
Parquet

Y AW

£ H ECOLE POLYTECHNIQUE
W ProJeCt FEDERALE DE LAUSANNE

Plot labels of selected combinations

RDD RDDKey DFbin
R RDD RDD DF DF
structure
I_)a.lta- Auto Manual (GID) Auto Auto
partitioning
Data NP arra NP arra Byte arra Python list
container y y y y y

Data source

33

Evaluation Platform

Hardware
On-site supercomputer
e 80 compute nodes (Skylake)
2 x Intel Xeon 6140
2 x 18 cores (72 threads with HT)

384 GB DRAM
2 x SSD P4500, 1 TB each

o O O O

e 120 compute nodes (KNL)
o Intel KNL 7230-tPRQ
o 64 cores (256 threads with HT)
o 96 GB DRAM + 16 GB MCDRAM

e Infiniband EDR 100 GB
e GPFS file system

Chan A

7" Project

Software
e Red Hat Enterprise Linux 7.3

e Java OpenJDK RE 1.8
e Apache Spark 2.2.1

Runtime Configuration *
e Exclusive access to allocated nodes

e Spark slaves use all cores
e Spark master runs on separate node

e Datasetsize: 2 TB

* Unless specified differently

34

Memory Footprint

DFpylist - BBP M RDD - Parquet RDDkey - Parquet B DFbin - BBP
DFbin - Parquet W RDDkey - BBP HRDD - BBP
300 _ _
= X 1 Crashed: could not continue evaluation
£. 250
=
g200 A - —> 3X - 6x increase wrt real file size
u?-) __________
> 150
3]
§ 100
p
T 50
= Close to real file size — memory efficient
O ______________
S S &
F e F OO
\,'bk (\Q \,O,b Q,b Qg’ Q (QQ &"’\ : \,Q (—}'OQ
PN & &€ & S * Original file size: 47 GB

o

. H ECOLE POLYTECHNIQUE
id ProJeCt FEDERALE DE LAUSANNE

35

Computation by GID / TS Performance

—RDD - BBP ——RDDkey - BBP =——DFbin - BBP
=——RDD - Parquet ——RDDkey - Parquet —DFbin - Parquet
400 200
350 Comp by GID 180 Comp by TS
— 160
i’ 300 140

120
100
80
60

40

Execution ti

= RN

o U O

o O o
Execution time [s]

50 e 20 ——————
0 0
8 16 24 32 40 8 16 24 32 40
Nodes # Nodes
e RDDKey fastest thanks to data partitioning e Comp by TS run after Comp by GID: some

rtial It hed — fast
e DFbin + RDD-Parquet slower due to data partiat restits cache aster

conversions (binary — NP array) e Significant speed-up from 8 to 16 nodes

7 Ban P

Pro;ect

EERA

Spark Performance: KNL vs Skylake

140
120

o © O
o O O

Execution Time [s]

N
o

20

xg Blue

Bram
i Project

mKNL = SKL

‘0‘1 \| ‘\
Q\eé Co ((\Q Co((\Q

T

Execution configuration:
e RDD-BBP only

e 1 simulation report (47 GB)
e 1+ 8 Spark worker nodes

e Spark worker cores:
o KNL: 16
o SKL: 36

* Tried > 1 report @ KNL — crash
* Tried > 16 worker cores @ KNL — crash
Main problem: out of memory

37

Lessons Learned

e Type of data containers impacts the memory footprint
e Appropriate source data format leads to better 1/0O

e Manual partitioning can increase analysis performance, at the cost of longer loading
time

e Data conversions [obviously] add overhead

e Spark benefits from fast storage (shuffling, temporary files) and node memory

Y AW

" Project

38

e

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Conclusions

e The amount of data involved in brain tissue simulations is increasing — need for
scalable solutions

e Spark improves the performance of our scientific pipeline at different stages
e Design and configuration decisions are a key aspect that impacts performance

e In our context, we are missing a few features:
o NumPy support in DataFrames
o Better integration with non-HDFS parallel file systems (GPFS)
o Improved Pandas UDF support

Y AW

 Project i

40

Acknowledgements

e BBP Cells & Circuits, Molecular Systems, Scientific Visualization and HPC teams for
the support, feedback and images provided

e An award of computing time was provided by the ALCF Data Science Program (ADSP)

(1

! i ECOL NIQUE
i Pro_]eCt rrrrrr Uw%u

41

4 Blue
 Projact

I

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Thank you!

Questions...?

42

