
Accelerating the Pipeline of
Brain Tissue Simulations

with Apache Spark

Fernando Pereira, Judit Planas, Matthias Wolf
Blue Brain Project, EPFL

Outline

● Introduction

● Motivation

● Circuit building process
○ Functionalizer filtering
○ Partitioning
○ Reproducibility
○ Running at scale

● Simulation output analysis
○ Workflow & data structure
○ Evaluation

● Conclusions

2

3

Introduction

The Blue Brain Project

● The Blue Brain Project (BBP) is a Swiss initiative that targets the reconstruction and
simulation of the brain, hosted in Geneva

● BBP is a multidisciplinary team that brings together people from a wide variety of
backgrounds, like neuroscience, computer engineering, physics, maths or chemists
(~120 people and growing!)

4

BBP’s Key Target Contributions to Neuroscience

● Help scientists understand how the brain functions internally

● BBP has been able to reproduce the electrical behavior of a neocortex
fragment by means of a computer [1]

○ Revealed novel insights into the functioning of the neocortex

● Supercomputer-based simulations of the brain:
○ Enables experiments that are impossible in a laboratory

● Understanding the brain can contribute in different fields: understanding of brain
diseases, neurobotics, neuromorphic computing, AI, …

5

[1] Markram et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell, Vol. 163, Issue 2, pp 456 - 492

6

Motivation

7

Brain Tissue Simulation Pipeline

In vivo / in vitro
experiments Circuit buildingModel creation

Simulation
(in sillico experiments)

Data analysis

Visualization

Scripting analysis

Model validation

Larger Circuits, Larger Data

● Brain tissue simulations need & produce massive amounts of data very quickly
○ We cannot simulate the whole human brain with existing supercomputers
○ BBP focuses on the simulation of rodent brain regions

● Scientists use sequential scripts to build & analyze simulations
○ Python is preferred
○ They do not have time / expertise to improve their scripts
○ We are reaching the computational limit of our existing tools → need for scalable solutions

● Example: Plastic neocortex simulation
○ 31.000 neurons, 30 s biological time
○ Output: ~50 GB per recorded variable [x N]

8

9

Circuit Building Process

Circuit Building Process

Touch Detector

● Which sections of axons/dendrites overlap?

10

Circuit Building Process

Touch Detector

● Which sections of axons/dendrites overlap?

Functionalizer

● Which touches are biologically valid?
○ Filter out those which don’t fit

● What are the likely parameters?
○ Conductance, depression & facilitation time…
○ Sample from given distributions

11

11 M cells ~> 500 B touches

12

Functionalizer Filters

CutSoma-axon distance
Touch rules

Deterministic filters

SQL filter expression applied
to every touch

Limitation: Performance
degrades as the number of
rules increase

Improvement: Precalculate
and broadcast a filtering table.
Then merge by index lookup

Reduce

Probabilistic filters

Same principle as Rejection Sampling

13

Functionalizer Filters

Cut

1. Compute histogram

2. Validity checks

3. Filter accordingly

4. Re-compute histogram

5. Validity checks

6. Filter accordingly

Reduce

1. Compute histogram

2. Filter accordingly

Soma-axon distance
Touch rules

Deterministic filters

SQL filter expression applied
to every touch

Limitation: Performance
degrades as the number of
rules increase

Improvement: Precalculate
and broadcast a filtering table.
Then merge by index lookup

● Huge, impracticable, execution plans

● Lots of shuffles

● Sub-optimal partition sizes

Really, Lots of Shuffles!

14

Breaking Execution Plans

15

Consider checkpointing intermediate results to DISK

● Shuffles are written to disk anyway!

➔ Hard time analyzing complex execution plans?

➔ Expensive calculations may end up being computed twice?

● Break the plan in strategic points

○ Invaluable for analysis (& execution!)

○ Reuse them whenever possible

● Stack computations to hide I/O time

○ Avoid shuffles → Keep partitioning!

Breaking Execution Plans
● BroadcastJoin [if one DF is small enough]

○ "spark.sql.autoBroadcastJoinThreshold" (def: 10MB)
○ Manually activate with .broadcast()

16

● SortMergeJoin
○ Requires the same exact partitioning:

■ Columns & Number of partitions
○ Otherwise does it for you → shuffle

Storing to disk with Partitioning:
● Use saveAsTable() or localCheckpoint() (sorry parquet!)

df.write.mode("overwrite")._jwrite
.bucketBy(num_partitions, col1, _to_seq(sc, other_cols))
.sortBy(col1, _to_seq(sc, other_cols))
.saveAsTable(table_name))

W
or

ke
r

Partition Size Control
Avoid OOM

● Some operations (UDFs, sort) take N times the partition size in memory

● Executors heap mem < 64 GB, high thread (task) number
○ N_CPU x Partition_Size x Margin x 2 < 64 GB

17

Spark features:
● repartition(numPartitions, *cols) ??

● Our configuration
○ Cap partitions to 256 MB

○ 2x 18-core executors per worker node

Partition Size Control

18

Spark features:
● repartition(numPartitions, *cols) ⚠ → shuffle, will change partitioning scheme → shuffle

○ coalesce()
○ df.rdd.getNumPartitions()

● Configuration entries:
○ Reading: "spark.sql.files.maxPartitionBytes"

○ Writing: hadoopConfiguration().setInt("parquet.block.size",)

○ Shuffles: "spark.sql.shuffle.partitions"

Reproducibility & Scalability

19

Scientific Requirement: Reproducibility

We need random numbers to

● Sample touches to match statistical distributions
○ Using a “survival” probability depending on touch categorization

● Generate synapse properties from parameterized distributions
○ Following Poisson, Gamma, and Normal distributions

● Scientist want to have results reproducible on a binary level
○ Precludes relying on statistical equivalence
○ Need to use specific seeds in calculations

20

Scientific Requirement: Reproducibility

Seeding in the Spark documentation:

● pyspark.sql.DataFrame.sampleBy(col, fractions, seed=None)
● pyspark.sql.functions.rand(seed=None)

Discovered drawbacks:

● The current implementation in Spark itself uses the seed to re-seed per partition
● Introduces a dependency on number of partitions
● Variance in number of cores used influences partitions

No guaranteed reproducibility!

21

Possible approach:

● Java UDF class, applied per row
● But Java RNG stack is very barebones, JNI integration difficult

Adding RNG via Java / PandasUDFs + Cython

22

Other software (libraries) in our stack:

● Use Random123-based library (Threefry)
● Counter-based with keys, derivation creates new unique keys

Pandas UDF

Cython

How do we connect this with Spark?

● Easy to integrate with Cython into Python
● Call into Cython from columnar PandasUDF

Scientific Roadmap: Circuit Sizes

23

Interfacing with an HPC Cluster

Our environment:

● Spack / Nix for deployment and distribution (C libraries, Python packages)
● No permanent or dedicated Spark cluster

○ Use a shared HPC supercomputer (BlueBrain5)
○ Shared parallel file system: GPFS
○ 80 nodes with local disks: 2 TB NVME SSD per node
○ Launch software via SLURM

Custom script for spawning a temporary Spark cluster

● Sets up local directory structure and launch Spark master, workers
● Launches PySpark application and tears down cluster when done

24

Spark Performance

25

GPFS HDFS

After debugging:

● File system
interactions very
slow

● Non-linear
increase in file
count

● GPFS
performance
worsens

Why HDFS: Strong Scaling @ 1.7 M Neurons

26

● HDFS increases turnaround speed

Why HDFS: Weak Scaling

27

● C++ implementation: OOM

● GPFS limits runtime

● HDFS limits scale

Lessons Learned

28

● Successful transition from C++ implementation to Spark

● Execution plans grow unreasonably and need to be broken up

● Partitions sizes should be tuned for optimal execution

● Built-in RNG support is lackluster

● Parallel file systems become unusable very fast

29

Simulation Output Analysis

Pros
● Python support
● Scalable (cluster)
● Can be hidden from the final user
● Fits our type of analysis
● Compatible with on-site system

30

Data Analysis Workflow with Spark
Cons

● NumPy support is critical:
○ RDD: OK
○ DataFrame: needs data conversion

● Missing native reader for custom formats
● UDFs in Python add overhead
● On-site GPFS can’t be migrated to HDFS

● Matrix-like organization

● Written by rows (time steps) → good
performance

● Multiple read patterns: by rows or columns
or randomly… → cannot optimize for each
use case

31

● Key/value layout breaks major ordering
○ Key: Nrn + TS pair

● Open design to
○ Add/remove columns at convenience
○ Hold arbitrary data

● Faster (non-sequential) access time

Current Output Layout [Spark] Key/Value Layoutvs

Spark Data Analysis Evaluation

● In order to evaluate the Spark data analysis framework, we carefully choose two real
use cases, with opposite data access patterns:

32

Computation by GID (neuron ID) Computation by TS (time step)

● Mean values per neuron over time
● Column-major access

● Histogram of neuron values per time step
● Row-major access

Configuration Comparison

Parallel structure

33

Data partitioning

Data container

Data source

RDD

DF

Automatic

Manual

NP array

Binary: byte array

Python list

Binary (BBP)

Parquet

RDD RDDKey DFbin DFpylist

Parallel
structure RDD RDD DF DF

Data
partitioning Auto Manual (GID) Auto Auto

Data
container NP array NP array Byte array Python list

Data source BBP Par
quet BBP Par

quet BBP Par
quet BBP

Plot labels of selected combinations

Hardware
On-site supercomputer

● 80 compute nodes (Skylake)
○ 2 x Intel Xeon 6140
○ 2 x 18 cores (72 threads with HT)
○ 384 GB DRAM
○ 2 x SSD P4500, 1 TB each

● 120 compute nodes (KNL)
○ Intel KNL 7230-tPRQ
○ 64 cores (256 threads with HT)
○ 96 GB DRAM + 16 GB MCDRAM

● Infiniband EDR 100 GB

● GPFS file system

34

Evaluation Platform
Software

● Red Hat Enterprise Linux 7.3

● Java OpenJDK RE 1.8

● Apache Spark 2.2.1

Runtime Configuration *
● Exclusive access to allocated nodes

● Spark slaves use all cores

● Spark master runs on separate node

● Dataset size: 2 TB

* Unless specified differently

Memory Footprint

35

Close to real file size → memory efficient

3x - 6x increase wrt real file size

Crashed: could not continue evaluation

* Original file size: 47 GB

Computation by GID / TS Performance

● RDDKey fastest thanks to data partitioning

● DFbin + RDD-Parquet slower due to data
conversions (binary → NP array)

36

● Comp by TS run after Comp by GID: some
partial results cached → faster

● Significant speed-up from 8 to 16 nodes

Comp by GID Comp by TS

Spark Performance: KNL vs Skylake

37

Execution configuration:
● RDD-BBP only

● 1 simulation report (47 GB)

● 1 + 8 Spark worker nodes

● Spark worker cores:
○ KNL: 16
○ SKL: 36

* Tried > 1 report @ KNL → crash
* Tried > 16 worker cores @ KNL → crash
Main problem: out of memory

Lessons Learned

● Type of data containers impacts the memory footprint

● Appropriate source data format leads to better I/O

● Manual partitioning can increase analysis performance, at the cost of longer loading
time

● Data conversions [obviously] add overhead

● Spark benefits from fast storage (shuffling, temporary files) and node memory

38

39

Conclusions

Conclusions

40

● The amount of data involved in brain tissue simulations is increasing → need for
scalable solutions

● Spark improves the performance of our scientific pipeline at different stages

● Design and configuration decisions are a key aspect that impacts performance

● In our context, we are missing a few features:
○ NumPy support in DataFrames
○ Better integration with non-HDFS parallel file systems (GPFS)
○ Improved Pandas UDF support

Acknowledgements

● BBP Cells & Circuits, Molecular Systems, Scientific Visualization and HPC teams for
the support, feedback and images provided

● An award of computing time was provided by the ALCF Data Science Program (ADSP)

41

Thank you! ☺

Questions…?

42

