

Contribution ID: 7

Type: **not specified**

Advanced LinEar collider study GROup (ALEGRO) Input

Advanced and Novel Accelerators (ANAs) can provide acceleration gradients orders of magnitude greater than conventional accelerator technologies, and hence they have the potential to provide a new generation of more compact, high-energy machines. Four technologies are of particular interest, all of which rely on the generation of a wakefield which contains intense electric fields suitable for particle acceleration. In the laser wakefield accelerator (LWFA) and plasma wakefield accelerator (PWFA) the wakefields are driven in a plasma by intense laser or particle beams, respectively; in the structure wakefield accelerator (SWFA), the wake is excited by a particle bunch propagating through a structured tube; and in the dielectric laser accelerator (DLA), a laser pulse directly drives an accelerating mode in a dielectric structure.

In view of the great promise of ANAs, and the substantial effort worldwide to develop them, the Advanced LinEar collider study GROup, ALEGRO, was formed at the initiative of the ICFA ANA panel. ALEGRO aims to foster studies on accelerators based on ANAs for applications to high-energy physics, with the ambition of proposing a machine that would address the future goals of particle physics. This document summarizes the current view of the international community on this topic. It proposes a list of priorities that the community would like to invest effort in over the next five to ten years.

We propose as a long-term goal the design of an e+/e- γ /gamma collider with up to 30 TeV in the center of mass - the Advanced Linear International Collider (ALIC). On the path to this collider, a number of stepping stones have to be established. These will lead to spin-offs at lower energy that will benefit ultrafast X-ray science, medicine, and industrial applications. The major goal for our community over the next five to ten years is the construction of dedicated ANA facilities that can reliably deliver high-quality, multi-GeV electron beams from a small number of stages. The successful demonstration of robust stages of this type would provide a platform for ANAs with large number of stages generating high-quality beams in the TeV range.

The document also discusses other challenges that must be met for the complete ALIC concept. These include the design of appropriate particle sources, the development of high-power lasers needed for LWFAs and DLAs, the achievement of required tolerances, and the need for additional tools such as the development of novel diagnostics for the ultra-fast bunches generated by ANAs, and fast simulation methods.

Authors: Dr CROS, Brigitte (CNRS LPGP); Dr MUGGLI, Patric (Max Planck Institute for Physics)

Track Classification: Accelerator Science and Technology